mmproj upgrade
This commit is contained in:
16
README.md
16
README.md
@@ -119,6 +119,22 @@ Example:
|
||||
# capabilities: tools, vision
|
||||
```
|
||||
|
||||
**Vision Model Support (MMProj):**
|
||||
|
||||
For vision-capable models, you can specify an mmproj (multimodal projection) file that contains the vision encoder. See [MMProj Support Documentation](docs/MMPROJ_SUPPORT.md) for detailed information.
|
||||
|
||||
```dockerfile
|
||||
# hf_upstream: https://huggingface.co/mistralai/Ministral-3-14B-Reasoning-2512-GGUF
|
||||
# quantization: Q5_K_M
|
||||
# capabilities: vision, reasoning, tools
|
||||
#
|
||||
# mmproj_url: https://huggingface.co/unsloth/Ministral-3-14B-Reasoning-2512-GGUF
|
||||
# mmproj_quant: BF16
|
||||
# mmproj_sha256: abc123... (optional)
|
||||
```
|
||||
|
||||
The script will automatically download both the main GGUF and mmproj files, and create an Ollama model with vision support.
|
||||
|
||||
**Note:** Capabilities are read from the GGUF file's metadata by Ollama. The `# capabilities:` comment serves as documentation to track expected model features. If a model doesn't show the expected capabilities after installation, it may be due to the GGUF file lacking that metadata.
|
||||
|
||||
The script will:
|
||||
|
||||
@@ -1,6 +1,10 @@
|
||||
# ollama-utils-metadata
|
||||
# hf_upstream: https://huggingface.co/mistralai/Ministral-3-14B-Instruct-2512-GGUF/blob/main/Ministral-3-14B-Instruct-2512-Q5_K_M.gguf
|
||||
# capabilities: tools,vision
|
||||
# hf_upstream: https://huggingface.co/mistralai/Ministral-3-14B-Instruct-2512-GGUF
|
||||
# quantization: Q5_K_M
|
||||
# capabilities: vision, tools
|
||||
#
|
||||
# mmproj_url: https://huggingface.co/unsloth/Ministral-3-14B-Instruct-2512-GGUF
|
||||
# mmproj_quant: BF16
|
||||
FROM ./Ministral-3-14B-Instruct-2512-Q5_K_M.gguf
|
||||
|
||||
# Specialized parser for Mistral 3 logic
|
||||
|
||||
@@ -1,7 +1,10 @@
|
||||
# ollama-utils-metadata
|
||||
# hf_upstream: https://huggingface.co/mistralai/Ministral-3-14B-Reasoning-2512-gguf
|
||||
# quantization: q5_k_m
|
||||
# capabilities: tools,vision,thinking
|
||||
# hf_upstream: https://huggingface.co/mistralai/Ministral-3-14B-Reasoning-2512-GGUF
|
||||
# quantization: Q5_K_M
|
||||
# capabilities: vision, reasoning, tools
|
||||
#
|
||||
# mmproj_url: https://huggingface.co/unsloth/Ministral-3-14B-Reasoning-2512-GGUF
|
||||
# mmproj_quant: BF16
|
||||
FROM ./Ministral-3-14B-Reasoning-2512-Q5_K_M.gguf
|
||||
|
||||
# Specialized parser
|
||||
|
||||
@@ -1,6 +1,10 @@
|
||||
# ollama-utils-metadata
|
||||
# hf_upstream: https://huggingface.co/mistralai/Ministral-3-3B-Instruct-2512-GGUF/blob/main/Ministral-3-3B-Instruct-2512-Q5_K_M.gguf
|
||||
# capabilities: tools,vision
|
||||
# hf_upstream: https://huggingface.co/mistralai/Ministral-3-3B-Instruct-2512-GGUF
|
||||
# quantization: Q5_K_M
|
||||
# capabilities: vision, tools
|
||||
#
|
||||
# mmproj_url: https://huggingface.co/unsloth/Ministral-3-3B-Instruct-2512-GGUF
|
||||
# mmproj_quant: BF16
|
||||
FROM ./Ministral-3-3B-Instruct-2512-Q5_K_M.gguf
|
||||
|
||||
# Specialized parser for Mistral 3 logic
|
||||
|
||||
@@ -1,7 +1,10 @@
|
||||
# ollama-utils-metadata
|
||||
# hf_upstream: https://huggingface.co/mistralai/Ministral-3-3B-Reasoning-2512-gguf
|
||||
# quantization: q5_k_m
|
||||
# capabilities: tools,vision,thinking
|
||||
# hf_upstream: https://huggingface.co/mistralai/Ministral-3-3B-Reasoning-2512-GGUF
|
||||
# quantization: Q5_K_M
|
||||
# capabilities: vision, reasoning, tools
|
||||
#
|
||||
# mmproj_url: https://huggingface.co/unsloth/Ministral-3-3B-Reasoning-2512-GGUF
|
||||
# mmproj_quant: BF16
|
||||
FROM ./Ministral-3-3B-Reasoning-2512-Q5_K_M.gguf
|
||||
|
||||
# Specialized parser
|
||||
|
||||
@@ -1,6 +1,10 @@
|
||||
# ollama-utils-metadata
|
||||
# hf_upstream: https://huggingface.co/mistralai/Ministral-3-8B-Instruct-2512-GGUF/blob/main/Ministral-3-8B-Instruct-2512-Q5_K_M.gguf
|
||||
# capabilities: tools,vision
|
||||
# hf_upstream: https://huggingface.co/mistralai/Ministral-3-8B-Instruct-2512-GGUF
|
||||
# quantization: Q5_K_M
|
||||
# capabilities: vision, tools
|
||||
#
|
||||
# mmproj_url: https://huggingface.co/unsloth/Ministral-3-8B-Instruct-2512-GGUF
|
||||
# mmproj_quant: BF16
|
||||
FROM ./Ministral-3-8B-Instruct-2512-Q5_K_M.gguf
|
||||
|
||||
# Specialized parser for Mistral 3 logic
|
||||
|
||||
@@ -1,7 +1,10 @@
|
||||
# ollama-utils-metadata
|
||||
# hf_upstream: https://huggingface.co/mistralai/Ministral-3-8B-Reasoning-2512-gguf
|
||||
# quantization: q5_k_m
|
||||
# capabilities: tools,vision,thinking
|
||||
# hf_upstream: https://huggingface.co/mistralai/Ministral-3-8B-Reasoning-2512-GGUF
|
||||
# quantization: Q5_K_M
|
||||
# capabilities: vision, reasoning, tools
|
||||
#
|
||||
# mmproj_url: https://huggingface.co/unsloth/Ministral-3-8B-Reasoning-2512-GGUF
|
||||
# mmproj_quant: BF16
|
||||
FROM ./Ministral-3-8B-Reasoning-2512-Q5_K_M.gguf
|
||||
|
||||
# Specialized parser
|
||||
|
||||
@@ -105,6 +105,19 @@ def parse_modelfile(modelfile_path):
|
||||
caps_str = capabilities_match.group(1).strip()
|
||||
capabilities = [cap.strip() for cap in caps_str.split(',') if cap.strip()]
|
||||
|
||||
# Look for optional mmproj (multimodal projection) configuration
|
||||
# Format: # mmproj_url: https://huggingface.co/org/repo
|
||||
mmproj_url_match = re.search(r'#\s*mmproj_url:\s*(https://huggingface\.co/[^\s]+)', content)
|
||||
mmproj_url = mmproj_url_match.group(1) if mmproj_url_match else None
|
||||
|
||||
# Format: # mmproj_quant: BF16 (or F16, F32)
|
||||
mmproj_quant_match = re.search(r'#\s*mmproj_quant:\s*([a-zA-Z0-9_]+)', content)
|
||||
mmproj_quant = mmproj_quant_match.group(1) if mmproj_quant_match else 'BF16' # Default to BF16
|
||||
|
||||
# Format: # mmproj_sha256: <hash>
|
||||
mmproj_sha256_match = re.search(r'#\s*mmproj_sha256:\s*([a-fA-F0-9]{64})', content)
|
||||
mmproj_sha256 = mmproj_sha256_match.group(1) if mmproj_sha256_match else None
|
||||
|
||||
# Check if URL points to a specific GGUF file or just the repo
|
||||
if hf_url.endswith('.gguf') or '/blob/' in hf_url or '/resolve/' in hf_url:
|
||||
# Specific file provided - use as-is
|
||||
@@ -133,6 +146,47 @@ def parse_modelfile(modelfile_path):
|
||||
# Example: Ministral-3-3B-Instruct-2512-Q5_K_M.gguf -> ministral-3:3b-instruct-2512-q5_k_m
|
||||
model_base, model_tag, model_name = parse_model_name_from_gguf(gguf_filename)
|
||||
|
||||
# Construct mmproj info if mmproj_url is provided
|
||||
mmproj_info = None
|
||||
if mmproj_url:
|
||||
# Determine mmproj filename based on URL pattern
|
||||
if mmproj_url.endswith('.gguf') or '/blob/' in mmproj_url or '/resolve/' in mmproj_url:
|
||||
# Specific file provided
|
||||
mmproj_resolve_url = mmproj_url.replace('/blob/', '/resolve/')
|
||||
mmproj_filename = os.path.basename(urlparse(mmproj_resolve_url).path)
|
||||
else:
|
||||
# Repository root - construct filename
|
||||
# Two common patterns:
|
||||
# 1. mmproj-BF16.gguf (unsloth pattern)
|
||||
# 2. ModelName-BF16-mmproj.gguf (mistralai pattern)
|
||||
# Try to detect which pattern by checking the URL
|
||||
url_parts = urlparse(mmproj_url).path.strip('/').split('/')
|
||||
if len(url_parts) >= 2:
|
||||
repo_org = url_parts[0]
|
||||
if repo_org == 'unsloth':
|
||||
# unsloth pattern: mmproj-{QUANT}.gguf
|
||||
mmproj_filename = f"mmproj-{mmproj_quant}.gguf"
|
||||
else:
|
||||
# mistralai/others pattern: extract base name from main repo
|
||||
repo_name = url_parts[1]
|
||||
if repo_name.upper().endswith('-GGUF'):
|
||||
repo_name = repo_name[:-5]
|
||||
mmproj_filename = f"{repo_name}-{mmproj_quant}-mmproj.gguf"
|
||||
|
||||
mmproj_resolve_url = f"{mmproj_url.rstrip('/')}/resolve/main/{mmproj_filename}"
|
||||
else:
|
||||
print(f"✗ Invalid mmproj URL format: {mmproj_url}")
|
||||
mmproj_resolve_url = None
|
||||
mmproj_filename = None
|
||||
|
||||
if mmproj_resolve_url and mmproj_filename:
|
||||
mmproj_info = {
|
||||
'url': mmproj_url,
|
||||
'resolve_url': mmproj_resolve_url,
|
||||
'filename': mmproj_filename,
|
||||
'sha256': mmproj_sha256
|
||||
}
|
||||
|
||||
return {
|
||||
'hf_url': hf_url,
|
||||
'resolve_url': resolve_url,
|
||||
@@ -140,7 +194,8 @@ def parse_modelfile(modelfile_path):
|
||||
'model_name': model_name,
|
||||
'modelfile_path': modelfile_path,
|
||||
'sha256': sha256,
|
||||
'capabilities': capabilities
|
||||
'capabilities': capabilities,
|
||||
'mmproj': mmproj_info
|
||||
}
|
||||
|
||||
|
||||
@@ -302,7 +357,7 @@ def download_file(url, dest_path, filename, should_cancel=None, progress_callbac
|
||||
raise
|
||||
|
||||
|
||||
def create_ollama_model(modelfile_path, gguf_path, model_name, capabilities=None):
|
||||
def create_ollama_model(modelfile_path, gguf_path, model_name, capabilities=None, mmproj_path=None):
|
||||
"""
|
||||
Create an Ollama model from the Modelfile and GGUF file.
|
||||
|
||||
@@ -311,12 +366,15 @@ def create_ollama_model(modelfile_path, gguf_path, model_name, capabilities=None
|
||||
gguf_path: Path to the downloaded GGUF file
|
||||
model_name: Name for the Ollama model
|
||||
capabilities: Optional list of capabilities to add (e.g., ['tools', 'vision'])
|
||||
mmproj_path: Optional path to the mmproj file for vision models
|
||||
"""
|
||||
print(f"\nCreating Ollama model: {model_name}")
|
||||
|
||||
# Note: Capabilities are detected from the GGUF file metadata by Ollama automatically
|
||||
if capabilities:
|
||||
print(f" ℹ Expected capabilities from GGUF metadata: {', '.join(capabilities)}")
|
||||
if mmproj_path:
|
||||
print(f" ℹ Including mmproj file for vision support")
|
||||
|
||||
# Read the Modelfile and update the FROM path to point to the downloaded GGUF
|
||||
with open(modelfile_path, 'r') as f:
|
||||
@@ -331,12 +389,22 @@ def create_ollama_model(modelfile_path, gguf_path, model_name, capabilities=None
|
||||
modelfile_content
|
||||
)
|
||||
|
||||
# Add mmproj FROM line if provided
|
||||
if mmproj_path:
|
||||
# Add the mmproj FROM line after the main model FROM line
|
||||
modelfile_content = modelfile_content.replace(
|
||||
f'FROM {gguf_path}',
|
||||
f'FROM {gguf_path}\nFROM {mmproj_path}'
|
||||
)
|
||||
|
||||
# Debug: check if replacement happened
|
||||
if original_content == modelfile_content:
|
||||
print(f" WARNING: FROM line was not replaced!")
|
||||
print(f" Looking for pattern in: {original_content[:200]}")
|
||||
else:
|
||||
print(f" ✓ Replaced FROM line with local path: {gguf_path}")
|
||||
if mmproj_path:
|
||||
print(f" ✓ Added mmproj FROM line: {mmproj_path}")
|
||||
|
||||
# Create a temporary Modelfile with the correct path
|
||||
with tempfile.NamedTemporaryFile(mode='w', suffix='.Modelfile', delete=False) as tmp_modelfile:
|
||||
@@ -405,6 +473,10 @@ def install_model(modelfile_path, dry_run=False, skip_existing=False, existing_m
|
||||
log(f"SHA256: {model_info['sha256'][:16]}...")
|
||||
if model_info.get('capabilities'):
|
||||
log(f"Capabilities: {', '.join(model_info['capabilities'])}")
|
||||
if model_info.get('mmproj'):
|
||||
log(f"MMProj file: {model_info['mmproj']['filename']}")
|
||||
if model_info['mmproj']['sha256']:
|
||||
log(f"MMProj SHA256: {model_info['mmproj']['sha256'][:16]}...")
|
||||
|
||||
# Check if model already exists
|
||||
if skip_existing and existing_models and model_info['model_name'] in existing_models:
|
||||
@@ -413,9 +485,22 @@ def install_model(modelfile_path, dry_run=False, skip_existing=False, existing_m
|
||||
|
||||
# Get file size and check disk space
|
||||
file_size = get_file_size(model_info['resolve_url'])
|
||||
mmproj_file_size = None
|
||||
if model_info.get('mmproj'):
|
||||
mmproj_file_size = get_file_size(model_info['mmproj']['resolve_url'])
|
||||
|
||||
total_size = file_size or 0
|
||||
if mmproj_file_size:
|
||||
total_size += mmproj_file_size
|
||||
|
||||
if file_size:
|
||||
size_gb = file_size / (1024**3)
|
||||
log(f"File size: {size_gb:.2f} GB")
|
||||
log(f"GGUF file size: {size_gb:.2f} GB")
|
||||
if mmproj_file_size:
|
||||
mmproj_size_gb = mmproj_file_size / (1024**3)
|
||||
log(f"MMProj file size: {mmproj_size_gb:.2f} GB")
|
||||
log(f"Total size: {total_size / (1024**3):.2f} GB")
|
||||
file_size = total_size
|
||||
|
||||
if not dry_run:
|
||||
has_space, available, required = check_disk_space(file_size)
|
||||
@@ -434,6 +519,7 @@ def install_model(modelfile_path, dry_run=False, skip_existing=False, existing_m
|
||||
# Create temporary directory for download
|
||||
with tempfile.TemporaryDirectory() as tmp_dir:
|
||||
gguf_path = os.path.join(tmp_dir, model_info['gguf_filename'])
|
||||
mmproj_path = None
|
||||
|
||||
try:
|
||||
# Download the GGUF file
|
||||
@@ -445,12 +531,30 @@ def install_model(modelfile_path, dry_run=False, skip_existing=False, existing_m
|
||||
print(f"✗ Checksum verification failed!")
|
||||
return (False, False, model_info['model_name'])
|
||||
|
||||
# Download mmproj file if specified
|
||||
if model_info.get('mmproj'):
|
||||
mmproj_path = os.path.join(tmp_dir, model_info['mmproj']['filename'])
|
||||
download_file(
|
||||
model_info['mmproj']['resolve_url'],
|
||||
mmproj_path,
|
||||
model_info['mmproj']['filename'],
|
||||
should_cancel,
|
||||
progress_callback
|
||||
)
|
||||
|
||||
# Verify mmproj checksum if provided
|
||||
if model_info['mmproj']['sha256']:
|
||||
if not verify_checksum(mmproj_path, model_info['mmproj']['sha256']):
|
||||
print(f"✗ MMProj checksum verification failed!")
|
||||
return (False, False, model_info['model_name'])
|
||||
|
||||
# Create the Ollama model
|
||||
create_ollama_model(
|
||||
modelfile_path,
|
||||
gguf_path,
|
||||
model_info['model_name'],
|
||||
model_info.get('capabilities')
|
||||
model_info.get('capabilities'),
|
||||
mmproj_path
|
||||
)
|
||||
|
||||
print(f"\n✓ Successfully installed model: {model_info['model_name']}")
|
||||
|
||||
@@ -760,6 +760,14 @@ async function fetchHuggingFaceInfo() {
|
||||
modelfileSection.dataset.ggufFilename = data.gguf_filename;
|
||||
modelfileSection.style.display = 'block';
|
||||
|
||||
// Show mmproj info if modelfile includes mmproj configuration
|
||||
const mmprojInfo = document.getElementById('mmproj-info');
|
||||
if (data.modelfile_content && data.modelfile_content.includes('# mmproj_url:')) {
|
||||
mmprojInfo.style.display = 'block';
|
||||
} else {
|
||||
mmprojInfo.style.display = 'none';
|
||||
}
|
||||
|
||||
outputBox.innerHTML = '<div class="success-message">Model information fetched! Please review and customize the Modelfile below.</div>';
|
||||
} else {
|
||||
fileSelectSection.style.display = 'none';
|
||||
@@ -811,6 +819,14 @@ async function generateModelfileFromSelection() {
|
||||
modelfileSection.dataset.ggufFilename = data.gguf_filename;
|
||||
modelfileSection.style.display = 'block';
|
||||
|
||||
// Show mmproj info if modelfile includes mmproj configuration
|
||||
const mmprojInfo = document.getElementById('mmproj-info');
|
||||
if (data.modelfile_content && data.modelfile_content.includes('# mmproj_url:')) {
|
||||
mmprojInfo.style.display = 'block';
|
||||
} else {
|
||||
mmprojInfo.style.display = 'none';
|
||||
}
|
||||
|
||||
fileSelectSection.style.display = 'none';
|
||||
outputBox.innerHTML = '<div class="success-message">Modelfile generated! Please review and customize below.</div>';
|
||||
} else {
|
||||
@@ -835,6 +851,35 @@ async function createHuggingFaceModel() {
|
||||
return;
|
||||
}
|
||||
|
||||
// Parse mmproj info from modelfile content
|
||||
let mmprojUrl = null;
|
||||
let mmprojFilename = null;
|
||||
const mmprojUrlMatch = modelfileContent.match(/#\s*mmproj_url:\s*([^\s]+)/);
|
||||
const mmprojQuantMatch = modelfileContent.match(/#\s*mmproj_quant:\s*([^\s]+)/);
|
||||
|
||||
if (mmprojUrlMatch) {
|
||||
mmprojUrl = mmprojUrlMatch[1];
|
||||
const mmprojQuant = mmprojQuantMatch ? mmprojQuantMatch[1] : 'BF16';
|
||||
|
||||
// Determine mmproj filename based on repo pattern
|
||||
if (mmprojUrl.includes('/unsloth/')) {
|
||||
mmprojFilename = `mmproj-${mmprojQuant}.gguf`;
|
||||
} else {
|
||||
// Try to extract base name from modelfile content or gguf filename
|
||||
const baseMatch = ggufFilename.match(/^(.+?)-Q[0-9]/i);
|
||||
if (baseMatch) {
|
||||
mmprojFilename = `${baseMatch[1]}-${mmprojQuant}-mmproj.gguf`;
|
||||
} else {
|
||||
mmprojFilename = `mmproj-${mmprojQuant}.gguf`;
|
||||
}
|
||||
}
|
||||
|
||||
// Convert to resolve URL if needed
|
||||
if (!mmprojUrl.includes('/resolve/')) {
|
||||
mmprojUrl = `${mmprojUrl}/resolve/main/${mmprojFilename}`;
|
||||
}
|
||||
}
|
||||
|
||||
try {
|
||||
const response = await fetch('/api/install/huggingface/create', {
|
||||
method: 'POST',
|
||||
@@ -845,7 +890,9 @@ async function createHuggingFaceModel() {
|
||||
model_name: modelName,
|
||||
modelfile_content: modelfileContent,
|
||||
file_url: fileUrl,
|
||||
gguf_filename: ggufFilename
|
||||
gguf_filename: ggufFilename,
|
||||
mmproj_url: mmprojUrl,
|
||||
mmproj_filename: mmprojFilename
|
||||
})
|
||||
});
|
||||
|
||||
|
||||
@@ -198,6 +198,13 @@
|
||||
like tool calling or vision. Ollama detects these automatically from the GGUF file metadata.
|
||||
This comment helps you track which models support which features.
|
||||
</p>
|
||||
<p class="info-text" id="mmproj-info" style="display: none;">
|
||||
🖼️ <strong>Vision Models:</strong> This model appears to support vision capabilities.
|
||||
The <code># mmproj_url:</code> and <code># mmproj_quant:</code> fields specify the multimodal projection file
|
||||
needed for image processing. Without the mmproj file, you'll get an error:
|
||||
<em>"failed to process inputs: this model is missing data required for image input"</em>.
|
||||
The BF16 quantization is recommended for best vision quality (879 MB).
|
||||
</p>
|
||||
|
||||
<div class="form-group">
|
||||
<label for="hf-model-name">Model Name:</label>
|
||||
|
||||
54
web_app.py
54
web_app.py
@@ -288,7 +288,8 @@ def run_install_job(job_id: str, modelfile_path: str):
|
||||
install_jobs[job_id]['error'] = str(e)
|
||||
|
||||
|
||||
def run_huggingface_install_job(job_id: str, model_name: str, modelfile_content: str, file_url: str, gguf_filename: str):
|
||||
def run_huggingface_install_job(job_id: str, model_name: str, modelfile_content: str, file_url: str, gguf_filename: str,
|
||||
mmproj_url: str = None, mmproj_filename: str = None):
|
||||
"""Run HuggingFace model installation in background thread."""
|
||||
with install_lock:
|
||||
install_jobs[job_id]['status'] = 'running'
|
||||
@@ -305,6 +306,7 @@ def run_huggingface_install_job(job_id: str, model_name: str, modelfile_content:
|
||||
return install_jobs[job_id].get('cancelled', False)
|
||||
|
||||
temp_gguf = None
|
||||
temp_mmproj = None
|
||||
temp_modelfile = None
|
||||
|
||||
try:
|
||||
@@ -314,16 +316,27 @@ def run_huggingface_install_job(job_id: str, model_name: str, modelfile_content:
|
||||
temp_gguf.close()
|
||||
gguf_path = temp_gguf.name
|
||||
|
||||
mmproj_path = None
|
||||
if mmproj_url and mmproj_filename:
|
||||
temp_mmproj = tempfile.NamedTemporaryFile(suffix='.gguf', delete=False)
|
||||
temp_mmproj.close()
|
||||
mmproj_path = temp_mmproj.name
|
||||
|
||||
temp_modelfile = tempfile.NamedTemporaryFile(mode='w', suffix='.Modelfile', delete=False)
|
||||
temp_modelfile.write(modelfile_content)
|
||||
temp_modelfile.close()
|
||||
modelfile_path = temp_modelfile.name
|
||||
|
||||
# Use existing download_file function with callbacks
|
||||
# Download main GGUF file
|
||||
hf_install_module.download_file(file_url, gguf_path, gguf_filename, should_cancel, update_progress)
|
||||
|
||||
# Use existing create_ollama_model function
|
||||
hf_install_module.create_ollama_model(modelfile_path, gguf_path, model_name)
|
||||
# Download mmproj file if specified
|
||||
if mmproj_path and mmproj_url:
|
||||
update_progress('Downloading mmproj file for vision support...')
|
||||
hf_install_module.download_file(mmproj_url, mmproj_path, mmproj_filename, should_cancel, update_progress)
|
||||
|
||||
# Create Ollama model with both files
|
||||
hf_install_module.create_ollama_model(modelfile_path, gguf_path, model_name, mmproj_path=mmproj_path)
|
||||
|
||||
# Save Modelfile to repo
|
||||
normalized_name = model_name.replace(':', '-')
|
||||
@@ -353,6 +366,8 @@ def run_huggingface_install_job(job_id: str, model_name: str, modelfile_content:
|
||||
# Clean up temp files
|
||||
if temp_gguf and os.path.exists(temp_gguf.name):
|
||||
os.unlink(temp_gguf.name)
|
||||
if temp_mmproj and os.path.exists(temp_mmproj.name):
|
||||
os.unlink(temp_mmproj.name)
|
||||
if temp_modelfile and os.path.exists(temp_modelfile.name):
|
||||
os.unlink(temp_modelfile.name)
|
||||
|
||||
@@ -707,11 +722,31 @@ def generate_modelfile_response(org: str, repo: str, gguf_filename: str, file_ur
|
||||
quant_match = re.search(r'[._-](Q[0-9]+_[KLM0-9]+(?:_[LSM])?)', gguf_filename, re.IGNORECASE)
|
||||
quantization = quant_match.group(1).upper() if quant_match else 'unspecified'
|
||||
|
||||
# Detect if model might support vision (multimodal models)
|
||||
# Common patterns: ministral-3, qwen-vl, llava, etc.
|
||||
is_multimodal = any(pattern in repo.lower() for pattern in
|
||||
['ministral-3', 'qwen-vl', 'qwen2-vl', 'qwen3-vl', 'llava', 'minicpm-v', 'phi-3-vision'])
|
||||
|
||||
# Build capabilities list
|
||||
capabilities = ['tools'] # Most modern models support tools
|
||||
if is_multimodal:
|
||||
capabilities.append('vision')
|
||||
|
||||
# Build mmproj config if multimodal
|
||||
mmproj_config = ''
|
||||
if is_multimodal:
|
||||
# Try to use unsloth for mmproj (usually has more options)
|
||||
mmproj_org = 'unsloth' if 'ministral' in repo.lower() or 'qwen' in repo.lower() else org
|
||||
mmproj_config = f"""#
|
||||
# mmproj_url: https://huggingface.co/{mmproj_org}/{repo}
|
||||
# mmproj_quant: BF16
|
||||
"""
|
||||
|
||||
# Create Modelfile skeleton with relative path (like CLI does)
|
||||
modelfile_content = f"""# Modelfile for {full_name}
|
||||
# hf_upstream: {file_url}
|
||||
# quantization: {quantization}
|
||||
# capabilities: tools
|
||||
# capabilities: {', '.join(capabilities)}{mmproj_config}
|
||||
# sha256: <add_sha256_checksum_here>
|
||||
|
||||
FROM ./{gguf_filename}
|
||||
@@ -764,6 +799,8 @@ def api_create_from_modelfile():
|
||||
modelfile_content = data.get('modelfile_content', '')
|
||||
file_url = data.get('file_url', '')
|
||||
gguf_filename = data.get('gguf_filename', '')
|
||||
mmproj_url = data.get('mmproj_url', '').strip() or None
|
||||
mmproj_filename = data.get('mmproj_filename', '').strip() or None
|
||||
|
||||
if not model_name or not modelfile_content or not file_url:
|
||||
return jsonify({'error': 'Missing required parameters'}), 400
|
||||
@@ -785,7 +822,7 @@ def api_create_from_modelfile():
|
||||
# Start background thread
|
||||
thread = threading.Thread(
|
||||
target=run_huggingface_install_job,
|
||||
args=(job_id, model_name, modelfile_content, file_url, gguf_filename)
|
||||
args=(job_id, model_name, modelfile_content, file_url, gguf_filename, mmproj_url, mmproj_filename)
|
||||
)
|
||||
thread.daemon = True
|
||||
thread.start()
|
||||
@@ -795,11 +832,6 @@ def api_create_from_modelfile():
|
||||
'job_id': job_id,
|
||||
'message': 'Installation started'
|
||||
})
|
||||
|
||||
except Exception as e:
|
||||
return jsonify({'error': str(e)}), 500
|
||||
|
||||
|
||||
@app.route('/api/install/modelfile', methods=['POST'])
|
||||
def api_install_from_modelfile():
|
||||
"""Start installation of a model from an existing Modelfile as background job."""
|
||||
|
||||
Reference in New Issue
Block a user