Files
llm-eval-forensics/README.md
2026-01-16 09:18:07 +01:00

252 lines
6.3 KiB
Markdown

# AI Model Evaluation Framework
Comprehensive testing suite for evaluating AI models on general reasoning tasks and IT Forensics topics. Designed for testing quantized models (q4_K_M, q8, fp16) against academic and practical scenarios.
## Features
- **Comprehensive Test Coverage**
- Logic & Reasoning
- Mathematics & Calculations
- Instruction Following
- Creative Writing
- Code Generation
- Language Nuance
- IT Forensics (MFT analysis, file signatures, registry, memory, network)
- Multi-turn conversations with context retention
- **IT Forensics Focus**
- Raw hex dump analysis (Master File Table)
- File signature identification
- Registry hive analysis
- FILETIME conversions
- Memory artifact extraction
- TCP/IP header analysis
- Timeline reconstruction
- **Automated Testing**
- OpenAI-compatible API support (Ollama, LM Studio, etc.)
- Interactive evaluation with scoring rubric
- Progress tracking and auto-save
- Multi-turn conversation handling
- **Analysis & Comparison**
- Cross-model comparison reports
- Category-wise performance breakdown
- Difficulty-based analysis
- CSV export for further analysis
## Quick Start
### Prerequisites
```bash
# Python 3.8+
pip install pyyaml requests
```
### Installation
```bash
# Clone or download the files
# Ensure these files are in your working directory:
# - ai_eval.py
# - analyze_results.py
# - test_suite.yaml
```
### Basic Usage
#### 1. Test a Single Model
```bash
# For Ollama (default: http://localhost:11434)
python ai_eval.py --endpoint http://localhost:11434 --model qwen3:4b-q4_K_M
# For other endpoints with API key
python ai_eval.py \
--endpoint https://api.example.com \
--api-key sk-your-key-here \
--model your-model-name
```
#### 2. Test Multiple Models (Quantization Comparison)
```bash
# Test different quantizations of qwen3:4b
python ai_eval.py --endpoint http://localhost:11434 --model qwen3:4b-q4_K_M
python ai_eval.py --endpoint http://localhost:11434 --model qwen3:4b-q8_0
python ai_eval.py --endpoint http://localhost:11434 --model qwen3:4b-fp16
# Test different model sizes
python ai_eval.py --endpoint http://localhost:11434 --model qwen3:8b-q4_K_M
python ai_eval.py --endpoint http://localhost:11434 --model qwen3:14b-q4_K_M
```
#### 3. Filter by Category
```bash
# Test only IT Forensics categories
python ai_eval.py \
--endpoint http://localhost:11434 \
--model qwen3:4b \
--category "IT Forensics - File Systems"
```
#### 4. Analyze Results
```bash
# Compare all tested models
python analyze_results.py --compare
# Detailed report for specific model
python analyze_results.py --detail "qwen3:4b-q4_K_M"
# Export to CSV
python analyze_results.py --export comparison.csv
```
## Scoring Rubric
All tests are evaluated on a 0-5 scale:
| Score | Category | Description |
|-------|----------|-------------|
| 0-1 | **FAIL** | Major errors, fails to meet basic requirements |
| 2-3 | **PASS** | Meets requirements with minor issues |
| 4-5 | **EXCEPTIONAL** | Exceeds requirements, demonstrates deep understanding |
### Evaluation Criteria
#### Constraint Adherence
- Fail: Misses more than one constraint or forbidden word
- Pass: Follows all constraints but flow is awkward
- Exceptional: Follows all constraints with natural, fluid language
#### Unit Precision (for math/forensics)
- Fail: Errors in basic conversion
- Pass: Correct conversions but rounding errors
- Exceptional: Perfect precision across systems
#### Reasoning Path
- Fail: Gives only final answer without steps
- Pass: Shows steps but logic contains "leaps"
- Exceptional: Transparent, logical chain-of-thought
#### Code Safety
- Fail: Function crashes on bad input
- Pass: Logic correct but lacks error handling
- Exceptional: Production-ready with robust error catching
## Test Categories Overview
### General Reasoning (14 tests)
- Logic puzzles & temporal reasoning
- Multi-step mathematics
- Strict instruction following
- Creative writing with constraints
- Code generation
- Language nuance understanding
- Problem-solving & logistics
### IT Forensics (8 tests)
#### File Systems
- **MFT Basic Analysis**: Signature, status flags, sequence numbers
- **MFT Advanced**: Update sequence arrays, LSN, attribute offsets
- **File Signatures**: Magic number identification (JPEG, PNG, PDF, ZIP, RAR)
#### Registry & Artifacts
- **Registry Hive Headers**: Signature, sequence numbers, format version
- **FILETIME Conversion**: Windows timestamp decoding
#### Memory & Network
- **Memory Artifacts**: HTTP request extraction from dumps
- **TCP Headers**: Port, sequence, flags, window size analysis
#### Timeline Analysis
- **Event Reconstruction**: Log correlation, attack narrative building
### Multi-turn Conversations (3 tests)
- Progressive hex analysis (PE file structure)
- Forensic investigation scenario
- Technical depth building (NTFS ADS)
## File Structure
```bash
.
├── ai_eval.py # Main testing script
├── analyze_results.py # Results analysis and comparison
├── test_suite.yaml # Test definitions
├── results/ # Auto-created results directory
│ ├── qwen3_4b-q4_K_M_latest.json
│ ├── qwen3_4b-q8_0_latest.json
│ └── qwen3_4b-fp16_latest.json
└── README.md
```
## Advanced Usage
### Custom Test Suite
Edit `test_suite.yaml` to add your own tests:
```yaml
- category: "Your Category"
tests:
- id: "custom_01"
name: "Your Test Name"
type: "single_turn" # or "multi_turn"
prompt: "Your test prompt here"
evaluation_criteria:
- "Criterion 1"
- "Criterion 2"
expected_difficulty: "medium" # medium, hard, very_hard
```
### Batch Testing Script
Create `batch_test.sh`:
```bash
#!/bin/bash
ENDPOINT="http://localhost:11434"
# Test all qwen3:4b quantizations
for quant in q4_K_M q8_0 fp16; do
echo "Testing qwen3:4b-${quant}..."
python ai_eval.py --endpoint $ENDPOINT --model "qwen3:4b-${quant}"
done
# Test all sizes with q4_K_M
for size in 4b 8b 14b; do
echo "Testing qwen3:${size}-q4_K_M..."
python ai_eval.py --endpoint $ENDPOINT --model "qwen3:${size}-q4_K_M"
done
# Generate comparison
python analyze_results.py --compare
```
### Custom Endpoint Configuration
For OpenAI-compatible cloud services:
```bash
python ai_eval.py \
--endpoint https://api.service.com \
--api-key your-api-key \
--model model-name
```