forensic-pathways/RAG-Roadmap.md
overcuriousity 37edc1549e RAG Roadmap
2025-08-02 11:54:07 +02:00

358 lines
13 KiB
Markdown

# Forensic-Grade RAG Implementation Roadmap
## Context & Current State Analysis
You have access to a forensic tools recommendation system built with:
- **Embeddings-based retrieval** (src/utils/embeddings.ts)
- **Multi-stage AI pipeline** (src/utils/aiPipeline.ts)
- **Micro-task processing** for detailed analysis
- **Rate limiting and queue management** (src/utils/rateLimitedQueue.ts)
- **YAML-based tool database** (src/data/tools.yaml)
**Current Architecture**: Basic RAG (Retrieve → AI Selection → Micro-task Generation)
**Target Architecture**: Forensic-Grade RAG with transparency, objectivity, and reproducibility
## Implementation Roadmap
### PHASE 1: Configuration Externalization & AI Architecture Enhancement (Weeks 1-2)
#### 1.1 Complete Configuration Externalization
**Objective**: Remove all hard-coded values from codebase (except AI prompts)
**Tasks**:
1. **Create comprehensive configuration schema** in `src/config/`
- `forensic-scoring.yaml` - All scoring criteria, weights, thresholds
- `ai-models.yaml` - AI model configurations and routing
- `system-parameters.yaml` - Rate limits, queue settings, processing parameters
- `validation-criteria.yaml` - Expert validation rules, bias detection parameters
2. **Implement configuration loader** (`src/utils/configLoader.ts`)
- Hot-reload capability for configuration changes
- Environment-specific overrides (dev/staging/prod)
- Configuration validation and schema enforcement
- Default fallbacks for missing values
3. **Audit existing codebase** for hard-coded values:
- Search for literal numbers, strings, arrays in TypeScript files
- Extract to configuration files with meaningful names
- Ensure all thresholds (similarity scores, rate limits, token counts) are configurable
#### 1.2 Dual AI Model Architecture Implementation
**Objective**: Implement large + small model strategy for optimal cost/performance
**Tasks**:
1. **Extend environment configuration**:
```
# Strategic Analysis Model (Large, Few Tokens)
AI_STRATEGIC_ENDPOINT=
AI_STRATEGIC_API_KEY=
AI_STRATEGIC_MODEL=mistral-large-latest
AI_STRATEGIC_MAX_TOKENS=500
AI_STRATEGIC_CONTEXT_WINDOW=32000
# Content Generation Model (Small, Many Tokens)
AI_CONTENT_ENDPOINT=
AI_CONTENT_API_KEY=
AI_CONTENT_MODEL=mistral-small-latest
AI_CONTENT_MAX_TOKENS=2000
AI_CONTENT_CONTEXT_WINDOW=8000
```
2. **Create AI router** (`src/utils/aiRouter.ts`):
- Route different task types to appropriate models
- **Strategic tasks** → Large model: tool selection, bias analysis, methodology decisions
- **Content tasks** → Small model: descriptions, explanations, micro-task outputs
- Automatic fallback logic if primary model fails
- Usage tracking and cost optimization
3. **Update aiPipeline.ts**:
- Replace single `callAI()` method with task-specific methods
- Implement intelligent routing based on task complexity
- Add token estimation for optimal model selection
### PHASE 2: Evidence-Based Scoring Framework (Weeks 3-5)
#### 2.1 Forensic Scoring Engine Implementation
**Objective**: Replace subjective AI selection with objective, measurable criteria
**Tasks**:
1. **Create scoring framework** (`src/scoring/ForensicScorer.ts`):
```typescript
interface ScoringCriterion {
name: string;
weight: number;
methodology: string;
dataSources: string[];
calculator: (tool: Tool, scenario: Scenario) => Promise<CriterionScore>;
}
interface CriterionScore {
value: number; // 0-100
confidence: number; // 0-100
evidence: Evidence[];
lastUpdated: Date;
}
```
2. **Implement core scoring criteria**:
- **Court Admissibility Scorer**: Based on legal precedent database
- **Scientific Validity Scorer**: Based on peer-reviewed research citations
- **Methodology Alignment Scorer**: NIST SP 800-86 compliance assessment
- **Expert Consensus Scorer**: Practitioner survey data integration
- **Error Rate Scorer**: Known false positive/negative rates
3. **Build evidence provenance system**:
- Track source of every score component
- Maintain citation database for all claims
- Version control for scoring methodologies
- Automatic staleness detection for outdated evidence
#### 2.2 Deterministic Core Implementation
**Objective**: Ensure reproducible results for identical inputs
**Tasks**:
1. **Implement deterministic pipeline** (`src/analysis/DeterministicAnalyzer.ts`):
- Rule-based scenario classification (SCADA/Mobile/Network/etc.)
- Mathematical scoring combination (weighted averages, not AI decisions)
- Consistent tool ranking algorithms
- Reproducibility validation tests
2. **Add AI enhancement layer**:
- AI provides explanations, NOT decisions
- AI generates workflow descriptions based on deterministic selections
- AI creates contextual advice around objective tool choices
### PHASE 3: Transparency & Audit Trail System (Weeks 4-6)
#### 3.1 Complete Audit Trail Implementation
**Objective**: Track every decision with forensic-grade documentation
**Tasks**:
1. **Create audit framework** (`src/audit/AuditTrail.ts`):
```typescript
interface ForensicAuditTrail {
queryId: string;
userQuery: string;
processingSteps: AuditStep[];
finalRecommendation: RecommendationWithEvidence;
reproducibilityHash: string;
validationStatus: ValidationStatus;
}
interface AuditStep {
stepName: string;
input: any;
methodology: string;
output: any;
evidence: Evidence[];
confidence: number;
processingTime: number;
modelUsed?: string;
}
```
2. **Implement evidence citation system**:
- Automatic citation generation for all claims
- Link to source standards (NIST, ISO, RFC)
- Reference scientific papers for methodology choices
- Track expert validation contributors
3. **Build explanation generator**:
- Human-readable reasoning for every recommendation
- "Why this tool" and "Why not alternatives" explanations
- Confidence level communication
- Uncertainty quantification
#### 3.2 Bias Detection & Mitigation System
**Objective**: Actively detect and correct recommendation biases
**Tasks**:
1. **Implement bias detection** (`src/bias/BiasDetector.ts`):
- **Popularity bias**: Over-recommendation of well-known tools
- **Availability bias**: Preference for easily accessible tools
- **Recency bias**: Over-weighting of newest tools
- **Cultural bias**: Platform or methodology preferences
2. **Create mitigation strategies**:
- Automatic bias adjustment algorithms
- Diversity requirements for recommendations
- Fairness metrics across tool categories
- Bias reporting in audit trails
### PHASE 4: Expert Validation & Learning System (Weeks 6-8)
#### 4.1 Expert Review Integration
**Objective**: Enable forensic experts to validate and improve recommendations
**Tasks**:
1. **Build expert validation interface** (`src/validation/ExpertReview.ts`):
- Structured feedback collection from forensic practitioners
- Agreement/disagreement tracking with detailed reasoning
- Expert consensus building over time
- Minority opinion preservation
2. **Implement validation loop**:
- Flag recommendations requiring expert review
- Track expert validation rates and patterns
- Update scoring based on real-world feedback
- Methodology improvement based on expert input
#### 4.2 Real-World Case Learning
**Objective**: Learn from actual forensic investigations
**Tasks**:
1. **Create case study integration** (`src/learning/CaseStudyLearner.ts`):
- Anonymous case outcome tracking
- Tool effectiveness measurement in real scenarios
- Methodology success/failure analysis
- Continuous improvement based on field results
2. **Implement feedback loops**:
- Post-case recommendation validation
- Tool performance tracking in actual investigations
- Methodology refinement based on outcomes
- Success rate improvement over time
### PHASE 5: Advanced Features & Scientific Rigor (Weeks 7-10)
#### 5.1 Confidence & Uncertainty Quantification
**Objective**: Provide scientific confidence levels for all recommendations
**Tasks**:
1. **Implement uncertainty quantification** (`src/uncertainty/ConfidenceCalculator.ts`):
- Statistical confidence intervals for scores
- Uncertainty propagation through scoring pipeline
- Risk assessment for recommendation reliability
- Alternative recommendation ranking
2. **Add fallback recommendation system**:
- Multiple ranked alternatives for each recommendation
- Contingency planning for tool failures
- Risk-based recommendation portfolios
- Sensitivity analysis for critical decisions
#### 5.2 Reproducibility Testing Framework
**Objective**: Ensure consistent results across time and implementations
**Tasks**:
1. **Build reproducibility testing** (`src/testing/ReproducibilityTester.ts`):
- Automated consistency validation
- Inter-rater reliability testing
- Cross-temporal stability analysis
- Version control for methodology changes
2. **Implement quality assurance**:
- Continuous integration for reproducibility
- Regression testing for methodology changes
- Performance monitoring for consistency
- Alert system for unexpected variations
### PHASE 6: Integration & Production Readiness (Weeks 9-12)
#### 6.1 System Integration
**Objective**: Integrate all forensic-grade components seamlessly
**Tasks**:
1. **Update existing components**:
- Modify `aiPipeline.ts` to use new scoring framework
- Update `embeddings.ts` with evidence tracking
- Enhance `rateLimitedQueue.ts` with audit capabilities
- Refactor `query.ts` API to return audit trails
2. **Performance optimization**:
- Caching strategies for expensive evidence lookups
- Parallel processing for scoring criteria
- Efficient storage for audit trails
- Load balancing for dual AI models
#### 6.2 Production Features
**Objective**: Make system ready for professional forensic use
**Tasks**:
1. **Add professional features**:
- Export recommendations to forensic report formats
- Integration with existing forensic workflows
- Batch processing for multiple scenarios
- API endpoints for external tool integration
2. **Implement monitoring & maintenance**:
- Health checks for all system components
- Performance monitoring for response times
- Error tracking and alerting
- Automatic system updates for new evidence
## Technical Implementation Guidelines
### Configuration Management
- Use YAML files for human-readable configuration
- Implement JSON Schema validation for all config files
- Support environment variable overrides
- Hot-reload for development, restart for production changes
### AI Model Routing Strategy
```typescript
// Task Classification for Model Selection
const AI_TASK_ROUTING = {
strategic: ['tool-selection', 'bias-analysis', 'methodology-decisions'],
content: ['descriptions', 'explanations', 'micro-tasks', 'workflows']
};
// Cost Optimization Logic
if (taskComplexity === 'high' && responseTokens < 500) {
useModel = 'large';
} else if (taskComplexity === 'low' && responseTokens > 1000) {
useModel = 'small';
} else {
useModel = config.defaultModel;
}
```
### Evidence Database Structure
```typescript
interface EvidenceSource {
type: 'standard' | 'paper' | 'case-law' | 'expert-survey';
citation: string;
reliability: number;
lastValidated: Date;
content: string;
metadata: Record<string, any>;
}
```
### Quality Assurance Requirements
- All scoring criteria must have documented methodologies
- Every recommendation must include confidence levels
- All AI-generated content must be marked as such
- Reproducibility tests must pass with >95% consistency
- Expert validation rate must exceed 80% for production use
## Success Metrics
### Forensic Quality Metrics
- **Transparency**: 100% of decisions traceable to evidence
- **Objectivity**: <5% variance in scoring between runs
- **Reproducibility**: >95% identical results for identical inputs
- **Expert Agreement**: >80% expert validation rate
- **Bias Reduction**: <10% bias score across all categories
### Performance Metrics
- **Response Time**: <30 seconds for workflow recommendations
- **Accuracy**: >90% real-world case validation success
- **Coverage**: Support for >95% of common forensic scenarios
- **Reliability**: <1% system error rate
- **Cost Efficiency**: <50% cost reduction vs. single large model
## Risk Mitigation
### Technical Risks
- **AI Model Failures**: Implement robust fallback mechanisms
- **Configuration Errors**: Comprehensive validation and testing
- **Performance Issues**: Load testing and optimization
- **Data Corruption**: Backup and recovery procedures
### Forensic Risks
- **Bias Introduction**: Continuous monitoring and expert validation
- **Methodology Errors**: Peer review and scientific validation
- **Legal Challenges**: Ensure compliance with admissibility standards
- **Expert Disagreement**: Transparent uncertainty communication