add rerank endpoint

This commit is contained in:
SERVICE GPGPU
2026-01-20 20:44:48 +00:00
parent ccbe95ac1e
commit 6c7f96145b
3 changed files with 497 additions and 0 deletions

View File

@@ -0,0 +1,186 @@
import asyncio
import httpx
import logging
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from typing import List, Optional
import numpy as np
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
app = FastAPI(title="Ollama BGE Reranker (Working Workaround)")
class RerankRequest(BaseModel):
model: str
query: str
documents: List[str]
top_n: Optional[int] = 3
class RerankResult(BaseModel):
index: int
relevance_score: float
document: Optional[str] = None
class RerankResponse(BaseModel):
results: List[RerankResult]
async def get_embedding(
client: httpx.AsyncClient,
model: str,
text: str
) -> Optional[List[float]]:
"""Get embedding from Ollama."""
url = "http://localhost:11434/api/embeddings"
try:
response = await client.post(
url,
json={"model": model, "prompt": text},
timeout=30.0
)
response.raise_for_status()
return response.json().get("embedding")
except Exception as e:
logger.error(f"Error getting embedding: {e}")
return None
async def score_document_cross_encoder_workaround(
client: httpx.AsyncClient,
model: str,
query: str,
doc: str,
index: int
) -> dict:
"""
Workaround for using BGE-reranker with Ollama.
Based on: https://medium.com/@rosgluk/reranking-documents-with-ollama-and-qwen3-reranker-model-in-go-6dc9c2fb5f0b
Key discovery: When using concatenated query+doc embeddings,
LOWER magnitude = MORE relevant. We invert the scores so that
higher values = more relevant (standard convention).
Steps:
1. Concatenate query and document in cross-encoder format
2. Get embedding of the concatenated text
3. Calculate magnitude (lower = more relevant)
4. Invert and normalize to 0-1 (higher = more relevant)
"""
# Format as cross-encoder input
# The format matters - reranker models expect specific patterns
combined = f"Query: {query}\n\nDocument: {doc}\n\nRelevance:"
# Get embedding
embedding = await get_embedding(client, model, combined)
if embedding is None:
logger.warning(f"Failed to get embedding for document {index}")
return {
"index": index,
"relevance_score": 0.0,
"document": doc
}
# Calculate magnitude (L2 norm) of the embedding vector
vec = np.array(embedding)
magnitude = float(np.linalg.norm(vec))
# CRITICAL DISCOVERY: For BGE-reranker via Ollama embeddings:
# LOWER magnitude = MORE relevant document
# Observed range: ~15-25 (lower = better)
# Invert and normalize to 0-1 where higher score = more relevant
# Adjusted bounds based on empirical observations
typical_good_magnitude = 15.0 # Highly relevant documents
typical_poor_magnitude = 25.0 # Irrelevant documents
# Linear interpolation (inverted)
# magnitude 15 → score ~0.9
# magnitude 25 → score ~0.0
score = (typical_poor_magnitude - magnitude) / (typical_poor_magnitude - typical_good_magnitude)
# Clamp to 0-1 range
score = min(max(score, 0.0), 1.0)
logger.debug(f"Doc {index}: magnitude={magnitude:.2f}, score={score:.4f}")
logger.info(f"Raw magnitude: {magnitude:.2f}")
return {
"index": index,
"relevance_score": score,
"document": doc
}
@app.on_event("startup")
async def check_ollama():
"""Verify Ollama is accessible on startup."""
try:
async with httpx.AsyncClient() as client:
response = await client.get("http://localhost:11434/api/tags", timeout=5.0)
response.raise_for_status()
logger.info("✓ Successfully connected to Ollama")
logger.warning("⚠️ Using workaround: concatenation + magnitude")
logger.warning("⚠️ This is less accurate than proper cross-encoder usage")
except Exception as e:
logger.error(f"✗ Cannot connect to Ollama: {e}")
@app.post("/v1/rerank", response_model=RerankResponse)
async def rerank(request: RerankRequest):
"""
Rerank documents using BGE-reranker via Ollama workaround.
NOTE: This uses a workaround (magnitude of concatenated embeddings)
because Ollama doesn't expose BGE's classification head.
For best accuracy, use sentence-transformers directly.
"""
if not request.documents:
raise HTTPException(status_code=400, detail="No documents provided")
logger.info(f"Reranking {len(request.documents)} documents (workaround method)")
logger.info(f"Query: {request.query[:100]}...")
async with httpx.AsyncClient() as client:
# Score all documents concurrently
tasks = [
score_document_cross_encoder_workaround(
client, request.model, request.query, doc, i
)
for i, doc in enumerate(request.documents)
]
results = await asyncio.gather(*tasks)
# Sort by score DESCENDING (higher score = more relevant)
# Scores are now inverted, so higher = better
results.sort(key=lambda x: x["relevance_score"], reverse=True)
# Log scores
top_scores = [f"{r['relevance_score']:.4f}" for r in results[:request.top_n]]
logger.info(f"Top {len(top_scores)} scores: {top_scores}")
return {"results": results[:request.top_n]}
@app.get("/health")
def health_check():
"""Health check endpoint."""
return {
"status": "healthy",
"service": "ollama-bge-reranker-workaround",
"note": "Using magnitude workaround - less accurate than native"
}
if __name__ == "__main__":
import uvicorn
logger.info("=" * 60)
logger.info("Ollama BGE Reranker - WORKAROUND Implementation")
logger.info("=" * 60)
logger.info("Using concatenation + magnitude method")
logger.info("This works but is less accurate than proper cross-encoders")
logger.info("Starting on: http://0.0.0.0:8080")
logger.info("=" * 60)
uvicorn.run(app, host="0.0.0.0", port=8080, log_level="info")