266 lines
8.0 KiB
TypeScript
266 lines
8.0 KiB
TypeScript
// src/utils/embeddings.ts
|
||
import { promises as fs } from 'fs';
|
||
import path from 'path';
|
||
import { getCompressedToolsDataForAI } from './dataService.js';
|
||
|
||
interface EmbeddingData {
|
||
id: string;
|
||
type: 'tool' | 'concept';
|
||
name: string;
|
||
content: string;
|
||
embedding: number[];
|
||
metadata: {
|
||
domains?: string[];
|
||
phases?: string[];
|
||
tags?: string[];
|
||
skillLevel?: string;
|
||
type?: string;
|
||
};
|
||
}
|
||
|
||
interface EmbeddingsDatabase {
|
||
version: string;
|
||
lastUpdated: number;
|
||
embeddings: EmbeddingData[];
|
||
}
|
||
|
||
interface EmbeddingSearchResult extends EmbeddingData {
|
||
similarity: number;
|
||
}
|
||
|
||
class EmbeddingsService {
|
||
private embeddings: EmbeddingData[] = [];
|
||
private isInitialized = false;
|
||
private readonly embeddingsPath = path.join(process.cwd(), 'data', 'embeddings.json');
|
||
private readonly batchSize: number;
|
||
private readonly batchDelay: number;
|
||
private readonly enabled: boolean;
|
||
|
||
constructor() {
|
||
this.enabled = process.env.AI_EMBEDDINGS_ENABLED === 'true';
|
||
this.batchSize = parseInt(process.env.AI_EMBEDDINGS_BATCH_SIZE || '20', 10);
|
||
this.batchDelay = parseInt(process.env.AI_EMBEDDINGS_BATCH_DELAY_MS || '1000', 10);
|
||
}
|
||
|
||
async initialize(): Promise<void> {
|
||
if (!this.enabled) {
|
||
console.log('[EMBEDDINGS] Embeddings disabled, skipping initialization');
|
||
return;
|
||
}
|
||
|
||
try {
|
||
console.log('[EMBEDDINGS] Initializing embeddings system...');
|
||
|
||
// Create data directory if it doesn't exist
|
||
await fs.mkdir(path.dirname(this.embeddingsPath), { recursive: true });
|
||
|
||
const toolsData = await getCompressedToolsDataForAI();
|
||
const currentDataHash = this.hashData(toolsData);
|
||
|
||
// Try to load existing embeddings
|
||
const existingEmbeddings = await this.loadEmbeddings();
|
||
|
||
if (existingEmbeddings && existingEmbeddings.version === currentDataHash) {
|
||
console.log('[EMBEDDINGS] Using cached embeddings');
|
||
this.embeddings = existingEmbeddings.embeddings;
|
||
} else {
|
||
console.log('[EMBEDDINGS] Generating new embeddings...');
|
||
await this.generateEmbeddings(toolsData, currentDataHash);
|
||
}
|
||
|
||
this.isInitialized = true;
|
||
console.log(`[EMBEDDINGS] Initialized with ${this.embeddings.length} embeddings`);
|
||
|
||
} catch (error) {
|
||
console.error('[EMBEDDINGS] Failed to initialize:', error);
|
||
this.isInitialized = false;
|
||
}
|
||
}
|
||
|
||
private hashData(data: any): string {
|
||
return Buffer.from(JSON.stringify(data)).toString('base64').slice(0, 32);
|
||
}
|
||
|
||
private async loadEmbeddings(): Promise<EmbeddingsDatabase | null> {
|
||
try {
|
||
const data = await fs.readFile(this.embeddingsPath, 'utf8');
|
||
return JSON.parse(data);
|
||
} catch (error) {
|
||
console.log('[EMBEDDINGS] No existing embeddings found');
|
||
return null;
|
||
}
|
||
}
|
||
|
||
private async saveEmbeddings(version: string): Promise<void> {
|
||
const database: EmbeddingsDatabase = {
|
||
version,
|
||
lastUpdated: Date.now(),
|
||
embeddings: this.embeddings
|
||
};
|
||
|
||
await fs.writeFile(this.embeddingsPath, JSON.stringify(database, null, 2));
|
||
console.log(`[EMBEDDINGS] Saved ${this.embeddings.length} embeddings to disk`);
|
||
}
|
||
|
||
private createContentString(item: any): string {
|
||
const parts = [
|
||
item.name,
|
||
item.description || '',
|
||
...(item.tags || []),
|
||
...(item.domains || []),
|
||
...(item.phases || [])
|
||
];
|
||
|
||
return parts.filter(Boolean).join(' ').toLowerCase();
|
||
}
|
||
|
||
private async generateEmbeddingsBatch(contents: string[]): Promise<number[][]> {
|
||
const endpoint = process.env.AI_EMBEDDINGS_ENDPOINT;
|
||
const apiKey = process.env.AI_EMBEDDINGS_API_KEY;
|
||
const model = process.env.AI_EMBEDDINGS_MODEL;
|
||
|
||
if (!endpoint || !apiKey || !model) {
|
||
throw new Error('Missing embeddings API configuration');
|
||
}
|
||
|
||
const response = await fetch(endpoint, {
|
||
method: 'POST',
|
||
headers: {
|
||
'Content-Type': 'application/json',
|
||
'Authorization': `Bearer ${apiKey}`
|
||
},
|
||
body: JSON.stringify({
|
||
model,
|
||
input: contents
|
||
})
|
||
});
|
||
|
||
if (!response.ok) {
|
||
const error = await response.text();
|
||
throw new Error(`Embeddings API error: ${response.status} - ${error}`);
|
||
}
|
||
|
||
const data = await response.json();
|
||
return data.data.map((item: any) => item.embedding);
|
||
}
|
||
|
||
private async generateEmbeddings(toolsData: any, version: string): Promise<void> {
|
||
const allItems = [
|
||
...toolsData.tools.map((tool: any) => ({ ...tool, type: 'tool' })),
|
||
...toolsData.concepts.map((concept: any) => ({ ...concept, type: 'concept' }))
|
||
];
|
||
|
||
const contents = allItems.map(item => this.createContentString(item));
|
||
this.embeddings = [];
|
||
|
||
// Process in batches to respect rate limits
|
||
for (let i = 0; i < contents.length; i += this.batchSize) {
|
||
const batch = contents.slice(i, i + this.batchSize);
|
||
const batchItems = allItems.slice(i, i + this.batchSize);
|
||
|
||
console.log(`[EMBEDDINGS] Processing batch ${Math.ceil((i + 1) / this.batchSize)} of ${Math.ceil(contents.length / this.batchSize)}`);
|
||
|
||
try {
|
||
const embeddings = await this.generateEmbeddingsBatch(batch);
|
||
|
||
embeddings.forEach((embedding, index) => {
|
||
const item = batchItems[index];
|
||
this.embeddings.push({
|
||
id: `${item.type}_${item.name.replace(/[^a-zA-Z0-9]/g, '_')}`,
|
||
type: item.type,
|
||
name: item.name,
|
||
content: batch[index],
|
||
embedding,
|
||
metadata: {
|
||
domains: item.domains,
|
||
phases: item.phases,
|
||
tags: item.tags,
|
||
skillLevel: item.skillLevel,
|
||
type: item.type
|
||
}
|
||
});
|
||
});
|
||
|
||
// Rate limiting delay between batches
|
||
if (i + this.batchSize < contents.length) {
|
||
await new Promise(resolve => setTimeout(resolve, this.batchDelay));
|
||
}
|
||
|
||
} catch (error) {
|
||
console.error(`[EMBEDDINGS] Failed to process batch ${Math.ceil((i + 1) / this.batchSize)}:`, error);
|
||
throw error;
|
||
}
|
||
}
|
||
|
||
await this.saveEmbeddings(version);
|
||
}
|
||
|
||
public async embedText(text: string): Promise<number[]> {
|
||
// Re‑use the private batch helper to avoid auth duplication
|
||
const [embedding] = await this.generateEmbeddingsBatch([text.toLowerCase()]);
|
||
return embedding;
|
||
}
|
||
|
||
private cosineSimilarity(a: number[], b: number[]): number {
|
||
let dotProduct = 0;
|
||
let normA = 0;
|
||
let normB = 0;
|
||
|
||
for (let i = 0; i < a.length; i++) {
|
||
dotProduct += a[i] * b[i];
|
||
normA += a[i] * a[i];
|
||
normB += b[i] * b[i];
|
||
}
|
||
|
||
return dotProduct / (Math.sqrt(normA) * Math.sqrt(normB));
|
||
}
|
||
|
||
async findSimilar(query: string, maxResults: number = 30, threshold: number = 0.3): Promise<EmbeddingSearchResult[]> {
|
||
if (!this.enabled || !this.isInitialized || this.embeddings.length === 0) {
|
||
return [];
|
||
}
|
||
|
||
try {
|
||
const queryEmbeddings = await this.generateEmbeddingsBatch([query.toLowerCase()]);
|
||
const queryEmbedding = queryEmbeddings[0];
|
||
|
||
const similarities = this.embeddings.map(item => ({
|
||
...item,
|
||
similarity: this.cosineSimilarity(queryEmbedding, item.embedding)
|
||
}));
|
||
|
||
return similarities
|
||
.filter(item => item.similarity >= threshold)
|
||
.sort((a, b) => b.similarity - a.similarity)
|
||
.slice(0, maxResults);
|
||
|
||
} catch (error) {
|
||
console.error('[EMBEDDINGS] Failed to find similar items:', error);
|
||
return [];
|
||
}
|
||
}
|
||
|
||
isEnabled(): boolean {
|
||
return this.enabled && this.isInitialized;
|
||
}
|
||
|
||
getStats(): { enabled: boolean; initialized: boolean; count: number } {
|
||
return {
|
||
enabled: this.enabled,
|
||
initialized: this.isInitialized,
|
||
count: this.embeddings.length
|
||
};
|
||
}
|
||
}
|
||
|
||
|
||
|
||
const embeddingsService = new EmbeddingsService();
|
||
|
||
export { embeddingsService, type EmbeddingData, type EmbeddingSearchResult };
|
||
|
||
if (typeof window === 'undefined' && process.env.NODE_ENV !== 'test') {
|
||
embeddingsService.initialize().catch(error => {
|
||
console.error('[EMBEDDINGS] Auto-initialization failed:', error);
|
||
});
|
||
} |