forensic-pathways/src/utils/aiPipeline.ts
overcuriousity 1d98dd3257 cleanup
2025-08-16 17:11:03 +02:00

1572 lines
55 KiB
TypeScript

// src/utils/aiPipeline.ts
import { getCompressedToolsDataForAI } from './dataService.js';
import { embeddingsService, type EmbeddingData, type SimilarityResult } from './embeddings.js';
import { AI_PROMPTS, getPrompt } from '../config/prompts.js';
import { isToolHosted } from './toolHelpers.js';
import { auditService, type AuditEntry } from './auditService.js';
import dotenv from 'dotenv';
dotenv.config();
interface AIConfig {
endpoint: string;
apiKey: string;
model: string;
}
interface MicroTaskResult {
taskType: string;
content: string;
processingTimeMs: number;
success: boolean;
error?: string;
}
interface AnalysisResult {
recommendation: any;
processingStats: {
embeddingsUsed: boolean;
candidatesFromEmbeddings: number;
finalSelectedItems: number;
processingTimeMs: number;
microTasksCompleted: number;
microTasksFailed: number;
contextContinuityUsed: boolean;
};
}
interface AnalysisContext {
userQuery: string;
mode: string;
filteredData: any;
contextHistory: string[];
maxContextLength: number;
currentContextLength: number;
scenarioAnalysis?: string;
problemAnalysis?: string;
investigationApproach?: string;
criticalConsiderations?: string;
selectedTools?: Array<{
tool: any;
phase: string;
priority: string;
justification?: string;
taskRelevance?: number;
limitations?: string[];
}>;
backgroundKnowledge?: Array<{
concept: any;
relevance: string;
}>;
seenToolNames: Set<string>;
embeddingsSimilarities: Map<string, number>;
aiSelectedTools?: any[];
aiSelectedConcepts?: any[];
}
interface ConfidenceMetrics {
overall: number;
semanticRelevance: number;
taskSuitability: number;
uncertaintyFactors: string[];
strengthIndicators: string[];
}
class ImprovedMicroTaskAIPipeline {
private config: AIConfig;
private maxSelectedItems: number;
private embeddingCandidates: number;
private similarityThreshold: number;
private microTaskDelay: number;
private embeddingSelectionLimit: number;
private embeddingConceptsLimit: number;
private noEmbeddingsToolLimit: number;
private noEmbeddingsConceptLimit: number;
private embeddingsMinTools: number;
private embeddingsMaxReductionRatio: number;
private methodSelectionRatio: number;
private softwareSelectionRatio: number;
private maxContextTokens: number;
private maxPromptTokens: number;
private confidenceConfig: {
semanticWeight: number;
suitabilityWeight: number;
minimumThreshold: number;
mediumThreshold: number;
highThreshold: number;
};
constructor() {
this.config = {
endpoint: this.getRequiredEnv('AI_ANALYZER_ENDPOINT'),
apiKey: this.getRequiredEnv('AI_ANALYZER_API_KEY'),
model: this.getRequiredEnv('AI_ANALYZER_MODEL')
};
this.maxSelectedItems = this.getEnvInt('AI_MAX_SELECTED_ITEMS', 25);
this.embeddingCandidates = this.getEnvInt('AI_EMBEDDING_CANDIDATES', 50);
this.similarityThreshold = this.getEnvFloat('AI_SIMILARITY_THRESHOLD', 0.3);
this.microTaskDelay = this.getEnvInt('AI_MICRO_TASK_DELAY_MS', 500);
this.embeddingSelectionLimit = this.getEnvInt('AI_EMBEDDING_SELECTION_LIMIT', 30);
this.embeddingConceptsLimit = this.getEnvInt('AI_EMBEDDING_CONCEPTS_LIMIT', 15);
this.noEmbeddingsToolLimit = this.getEnvInt('AI_NO_EMBEDDINGS_TOOL_LIMIT', 25);
this.noEmbeddingsConceptLimit = this.getEnvInt('AI_NO_EMBEDDINGS_CONCEPT_LIMIT', 10);
this.embeddingsMinTools = this.getEnvInt('AI_EMBEDDINGS_MIN_TOOLS', 8);
this.embeddingsMaxReductionRatio = this.getEnvFloat('AI_EMBEDDINGS_MAX_REDUCTION_RATIO', 0.75);
this.methodSelectionRatio = this.getEnvFloat('AI_METHOD_SELECTION_RATIO', 0.4);
this.softwareSelectionRatio = this.getEnvFloat('AI_SOFTWARE_SELECTION_RATIO', 0.5);
this.maxContextTokens = this.getEnvInt('AI_MAX_CONTEXT_TOKENS', 4000);
this.maxPromptTokens = this.getEnvInt('AI_MAX_PROMPT_TOKENS', 1500);
this.confidenceConfig = {
semanticWeight: this.getEnvFloat('CONFIDENCE_SEMANTIC_WEIGHT', 0.3),
suitabilityWeight: this.getEnvFloat('CONFIDENCE_SUITABILITY_WEIGHT', 0.7),
minimumThreshold: this.getEnvInt('CONFIDENCE_MINIMUM_THRESHOLD', 40),
mediumThreshold: this.getEnvInt('CONFIDENCE_MEDIUM_THRESHOLD', 60),
highThreshold: this.getEnvInt('CONFIDENCE_HIGH_THRESHOLD', 80)
};
console.log('[AI-PIPELINE] Initialized with audit service integration');
}
private getRequiredEnv(key: string): string {
const value = process.env[key];
if (!value) {
throw new Error(`Missing required environment variable: ${key}`);
}
return value;
}
private getEnvInt(key: string, defaultValue: number): number {
const value = process.env[key];
return value ? parseInt(value, 10) : defaultValue;
}
private getEnvFloat(key: string, defaultValue: number): number {
const value = process.env[key];
return value ? parseFloat(value) : defaultValue;
}
// SIMPLIFIED AUDIT INTEGRATION - Use auditService instead of local implementation
private addAuditEntry(
context: AnalysisContext,
phase: string,
action: string,
input: any,
output: any,
confidence: number,
startTime: number,
metadata: Record<string, any> = {}
): void {
auditService.addEntry(phase, action, input, output, confidence, startTime, metadata);
}
private calculateSelectionConfidence(result: any, candidateCount: number): number {
if (!result?.selectedTools) return 30;
const selectionRatio = result.selectedTools.length / candidateCount;
const hasReasoning = result.reasoning && result.reasoning.length > 50;
let confidence = 60;
if (selectionRatio > 0.05 && selectionRatio < 0.3) confidence += 20;
else if (selectionRatio <= 0.05) confidence -= 10;
else confidence -= 15;
if (hasReasoning) confidence += 15;
if (result.selectedConcepts?.length > 0) confidence += 5;
return Math.min(95, Math.max(25, confidence));
}
private estimateTokens(text: string): number {
return Math.ceil(text.length / 4);
}
private addToContextHistory(context: AnalysisContext, newEntry: string): void {
const entryTokens = this.estimateTokens(newEntry);
context.contextHistory.push(newEntry);
context.currentContextLength += entryTokens;
while (context.currentContextLength > this.maxContextTokens && context.contextHistory.length > 1) {
const removed = context.contextHistory.shift()!;
context.currentContextLength -= this.estimateTokens(removed);
}
}
private safeParseJSON(jsonString: string, fallback: any = null): any {
try {
let cleaned = jsonString.trim();
const jsonBlockPatterns = [
/```json\s*([\s\S]*?)\s*```/i,
/```\s*([\s\S]*?)\s*```/i,
/\{[\s\S]*\}/,
];
for (const pattern of jsonBlockPatterns) {
const match = cleaned.match(pattern);
if (match) {
cleaned = match[1] || match[0];
break;
}
}
if (!cleaned.endsWith('}') && !cleaned.endsWith(']')) {
console.warn('[AI-PIPELINE] JSON appears truncated, attempting recovery');
let braceCount = 0;
let bracketCount = 0;
let inString = false;
let escaped = false;
let lastCompleteStructure = '';
for (let i = 0; i < cleaned.length; i++) {
const char = cleaned[i];
if (escaped) {
escaped = false;
continue;
}
if (char === '\\') {
escaped = true;
continue;
}
if (char === '"' && !escaped) {
inString = !inString;
continue;
}
if (!inString) {
if (char === '{') braceCount++;
if (char === '}') braceCount--;
if (char === '[') bracketCount++;
if (char === ']') bracketCount--;
if (braceCount === 0 && bracketCount === 0 && (char === '}' || char === ']')) {
lastCompleteStructure = cleaned.substring(0, i + 1);
}
}
}
if (lastCompleteStructure) {
cleaned = lastCompleteStructure;
} else {
if (braceCount > 0) cleaned += '}';
if (bracketCount > 0) cleaned += ']';
}
}
const parsed = JSON.parse(cleaned);
if (parsed && typeof parsed === 'object') {
if (!parsed.selectedTools) parsed.selectedTools = [];
if (!parsed.selectedConcepts) parsed.selectedConcepts = [];
if (!Array.isArray(parsed.selectedTools)) parsed.selectedTools = [];
if (!Array.isArray(parsed.selectedConcepts)) parsed.selectedConcepts = [];
}
return parsed;
} catch (error) {
console.warn('[AI-PIPELINE] JSON parsing failed:', error.message);
if (jsonString.includes('selectedTools') || jsonString.includes('selectedConcepts')) {
const selectedTools: string[] = [];
const selectedConcepts: string[] = [];
const toolsMatch = jsonString.match(/"selectedTools"\s*:\s*\[([\s\S]*?)\]/i);
if (toolsMatch) {
const toolMatches = toolsMatch[1].match(/"([^"]+)"/g);
if (toolMatches) {
selectedTools.push(...toolMatches.map(match => match.replace(/"/g, '')));
}
}
const conceptsMatch = jsonString.match(/"selectedConcepts"\s*:\s*\[([\s\S]*?)\]/i);
if (conceptsMatch) {
const conceptMatches = conceptsMatch[1].match(/"([^"]+)"/g);
if (conceptMatches) {
selectedConcepts.push(...conceptMatches.map(match => match.replace(/"/g, '')));
}
}
if (selectedTools.length === 0 && selectedConcepts.length === 0) {
const allMatches = jsonString.match(/"([^"]+)"/g);
if (allMatches) {
const possibleNames = allMatches
.map(match => match.replace(/"/g, ''))
.filter(name =>
name.length > 2 &&
!['selectedTools', 'selectedConcepts', 'reasoning'].includes(name) &&
!name.includes(':') &&
!name.match(/^\d+$/)
)
.slice(0, 15);
selectedTools.push(...possibleNames);
}
}
if (selectedTools.length > 0 || selectedConcepts.length > 0) {
console.log('[AI-PIPELINE] JSON recovery successful:', selectedTools.length, 'tools,', selectedConcepts.length, 'concepts');
return {
selectedTools,
selectedConcepts,
reasoning: 'Recovered from malformed JSON response'
};
}
}
return fallback;
}
}
private addToolToSelection(
context: AnalysisContext,
tool: any,
phase: string,
priority: string,
justification?: string,
taskRelevance?: number,
limitations?: string[]
): boolean {
context.seenToolNames.add(tool.name);
if (!context.selectedTools) context.selectedTools = [];
context.selectedTools.push({
tool,
phase,
priority,
justification,
taskRelevance,
limitations
});
return true;
}
private generatePhaseQueryTemplates(phases: any[]): Record<string, string> {
const templates: Record<string, string> = {};
phases.forEach((phase: any) => {
if (phase?.id && phase?.name) {
const phaseKeywords = [
'forensic',
phase.name.toLowerCase(),
...(phase.description ? phase.description.toLowerCase().split(' ').filter((word: string) => word.length > 3) : []),
...(phase.key_activities || []).map((activity: string) => activity.toLowerCase()),
...(phase.typical_tools || []).map((tool: string) => tool.toLowerCase())
].join(' ');
templates[phase.id] = phaseKeywords;
}
});
return templates;
}
private async getIntelligentCandidates(
userQuery: string,
toolsData: any,
mode: string,
context: AnalysisContext
) {
let candidateTools: any[] = [];
let candidateConcepts: any[] = [];
let selectionMethod = 'unknown';
context.embeddingsSimilarities = new Map<string, number>();
try {
await embeddingsService.waitForInitialization();
} catch (error) {
console.error('[AI-PIPELINE] Embeddings initialization failed:', error);
}
if (embeddingsService.isEnabled()) {
const embeddingsStart = Date.now();
const similarItems = await embeddingsService.findSimilar(
userQuery,
this.embeddingCandidates,
this.similarityThreshold
) as SimilarityResult[];
console.log('[AI-PIPELINE] Embeddings found', similarItems.length, 'similar items');
similarItems.forEach(item => {
context.embeddingsSimilarities.set(item.name, item.similarity);
});
const toolsMap = new Map(toolsData.tools.map((tool: any) => [tool.name, tool]));
const conceptsMap = new Map(toolsData.concepts.map((concept: any) => [concept.name, concept]));
const similarTools = similarItems
.filter((item: any) => item.type === 'tool')
.map((item: any) => toolsMap.get(item.name))
.filter((tool: any): tool is NonNullable<any> => tool !== undefined && tool !== null);
const similarConcepts = similarItems
.filter((item: any) => item.type === 'concept')
.map((item: any) => conceptsMap.get(item.name))
.filter((concept: any): concept is NonNullable<any> => concept !== undefined && concept !== null);
const totalAvailableTools = toolsData.tools.length;
const reductionRatio = similarTools.length / totalAvailableTools;
if (similarTools.length >= this.embeddingsMinTools && reductionRatio <= this.embeddingsMaxReductionRatio) {
candidateTools = similarTools;
candidateConcepts = similarConcepts;
selectionMethod = 'embeddings_candidates';
console.log('[AI-PIPELINE] Using embeddings filtering:', totalAvailableTools, '→', similarTools.length, 'tools');
} else {
console.log('[AI-PIPELINE] Embeddings filtering insufficient, using full dataset');
candidateTools = toolsData.tools;
candidateConcepts = toolsData.concepts;
selectionMethod = 'full_dataset';
}
this.addAuditEntry(
context,
'retrieval',
'embeddings-search',
{ query: userQuery, threshold: this.similarityThreshold, candidates: this.embeddingCandidates },
{
candidatesFound: similarItems.length,
reductionRatio: reductionRatio,
usingEmbeddings: selectionMethod === 'embeddings_candidates',
totalAvailable: totalAvailableTools,
filtered: similarTools.length
},
selectionMethod === 'embeddings_candidates' ? 85 : 60,
embeddingsStart,
{ selectionMethod, embeddingsEnabled: true }
);
} else {
console.log('[AI-PIPELINE] Embeddings disabled, using full dataset');
candidateTools = toolsData.tools;
candidateConcepts = toolsData.concepts;
selectionMethod = 'full_dataset';
}
const finalSelection = await this.aiSelectionWithFullData(
userQuery,
candidateTools,
candidateConcepts,
mode,
selectionMethod,
context
);
return {
tools: finalSelection.selectedTools,
concepts: finalSelection.selectedConcepts,
domains: toolsData.domains,
phases: toolsData.phases,
'domain-agnostic-software': toolsData['domain-agnostic-software']
};
}
private async aiSelectionWithFullData(
userQuery: string,
candidateTools: any[],
candidateConcepts: any[],
mode: string,
selectionMethod: string,
context: AnalysisContext
) {
const selectionStart = Date.now();
const candidateMethods = candidateTools.filter((tool: any) => tool && tool.type === 'method');
const candidateSoftware = candidateTools.filter((tool: any) => tool && tool.type === 'software');
console.log('[AI-PIPELINE] Tool selection candidates:', candidateMethods.length, 'methods,', candidateSoftware.length, 'software,', candidateConcepts.length, 'concepts');
const methodsWithFullData = candidateMethods.map(this.createToolData);
const softwareWithFullData = candidateSoftware.map(this.createToolData);
const conceptsWithFullData = candidateConcepts.map(this.createConceptData);
let toolsToSend: any[];
let conceptsToSend: any[];
if (selectionMethod === 'embeddings_candidates') {
const totalLimit = this.embeddingSelectionLimit;
const methodLimit = Math.ceil(totalLimit * this.methodSelectionRatio);
const softwareLimit = Math.floor(totalLimit * this.softwareSelectionRatio);
toolsToSend = [
...methodsWithFullData.slice(0, methodLimit),
...softwareWithFullData.slice(0, softwareLimit)
];
const remainingCapacity = totalLimit - toolsToSend.length;
if (remainingCapacity > 0) {
if (methodsWithFullData.length > methodLimit) {
toolsToSend.push(...methodsWithFullData.slice(methodLimit, methodLimit + remainingCapacity));
} else if (softwareWithFullData.length > softwareLimit) {
toolsToSend.push(...softwareWithFullData.slice(softwareLimit, softwareLimit + remainingCapacity));
}
}
conceptsToSend = conceptsWithFullData.slice(0, this.embeddingConceptsLimit);
} else {
const maxTools = this.noEmbeddingsToolLimit;
const maxConcepts = this.noEmbeddingsConceptLimit;
const methodLimit = Math.ceil(maxTools * 0.4);
const softwareLimit = Math.floor(maxTools * 0.5);
toolsToSend = [
...methodsWithFullData.slice(0, methodLimit),
...softwareWithFullData.slice(0, softwareLimit)
];
const remainingCapacity = maxTools - toolsToSend.length;
if (remainingCapacity > 0) {
if (methodsWithFullData.length > methodLimit) {
toolsToSend.push(...methodsWithFullData.slice(methodLimit, methodLimit + remainingCapacity));
} else if (softwareWithFullData.length > softwareLimit) {
toolsToSend.push(...softwareWithFullData.slice(softwareLimit, softwareLimit + remainingCapacity));
}
}
conceptsToSend = conceptsWithFullData.slice(0, maxConcepts);
}
const basePrompt = getPrompt('toolSelection', mode, userQuery, selectionMethod, this.maxSelectedItems);
const prompt = getPrompt('toolSelectionWithData', basePrompt, toolsToSend, conceptsToSend);
const estimatedTokens = this.estimateTokens(prompt);
console.log('[AI-PIPELINE] Sending to AI:', toolsToSend.filter((t: any) => t.type === 'method').length, 'methods,', toolsToSend.filter((t: any) => t.type === 'software').length, 'software,', conceptsToSend.length, 'concepts');
if (estimatedTokens > 35000) {
console.warn('[AI-PIPELINE] WARNING: Prompt tokens may exceed model limits:', estimatedTokens);
}
try {
const response = await this.callAI(prompt, 2500);
const result = this.safeParseJSON(response, null);
if (!result || !Array.isArray(result.selectedTools) || !Array.isArray(result.selectedConcepts)) {
console.error('[AI-PIPELINE] AI selection returned invalid structure');
this.addAuditEntry(
context,
'selection',
'ai-tool-selection-failed',
{ candidateCount: candidateTools.length, mode },
{ error: 'Invalid JSON structure' },
10,
selectionStart,
{ aiModel: this.config.model, selectionMethod }
);
throw new Error('AI selection failed to return valid tool and concept selection');
}
const totalSelected = result.selectedTools.length + result.selectedConcepts.length;
if (totalSelected === 0) {
throw new Error('AI selection returned empty selection');
}
const toolsMap = new Map(candidateTools.map((tool: any) => [tool.name, tool]));
const conceptsMap = new Map(candidateConcepts.map((concept: any) => [concept.name, concept]));
const selectedTools = result.selectedTools
.map((name: string) => toolsMap.get(name))
.filter((tool: any): tool is NonNullable<any> => tool !== undefined && tool !== null);
const selectedConcepts = result.selectedConcepts
.map((name: string) => conceptsMap.get(name))
.filter((concept: any): concept is NonNullable<any> => concept !== undefined && concept !== null);
const selectedMethods = selectedTools.filter((t: any) => t && t.type === 'method');
const selectedSoftware = selectedTools.filter((t: any) => t && t.type === 'software');
console.log('[AI-PIPELINE] AI selected:', selectedMethods.length, 'methods,', selectedSoftware.length, 'software,', selectedConcepts.length, 'concepts');
const confidence = this.calculateSelectionConfidence(result, candidateTools.length + candidateConcepts.length);
this.addAuditEntry(
context,
'selection',
'ai-tool-selection',
{ candidateCount: candidateTools.length, mode },
{
selectedMethodCount: selectedMethods.length,
selectedSoftwareCount: selectedSoftware.length,
selectedConceptCount: selectedConcepts.length,
reasoning: result.reasoning?.slice(0, 200),
methodBalance: `${((selectedMethods.length / (selectedTools.length || 1)) * 100).toFixed(0)}%`
},
confidence,
selectionStart,
{ aiModel: this.config.model, selectionMethod }
);
return { selectedTools, selectedConcepts };
} catch (error) {
console.error('[AI-PIPELINE] AI selection failed:', error);
this.addAuditEntry(
context,
'selection',
'ai-tool-selection-error',
{ candidateCount: candidateTools.length, mode },
{ error: error.message },
5,
selectionStart,
{ aiModel: this.config.model, selectionMethod }
);
throw error;
}
}
private createToolData = (tool: any) => ({
name: tool.name,
type: tool.type,
description: tool.description,
domains: tool.domains,
phases: tool.phases,
platforms: tool.platforms || [],
tags: tool.tags || [],
skillLevel: tool.skillLevel,
license: tool.license,
accessType: tool.accessType,
projectUrl: tool.projectUrl,
knowledgebase: tool.knowledgebase,
related_concepts: tool.related_concepts || [],
related_software: tool.related_software || []
});
private createConceptData = (concept: any) => ({
name: concept.name,
type: 'concept',
description: concept.description,
domains: concept.domains,
phases: concept.phases,
tags: concept.tags || [],
skillLevel: concept.skillLevel,
related_concepts: concept.related_concepts || [],
related_software: concept.related_software || []
});
private async delay(ms: number): Promise<void> {
return new Promise(resolve => setTimeout(resolve, ms));
}
private async callMicroTaskAI(
prompt: string,
context: AnalysisContext,
maxTokens: number = 500
): Promise<MicroTaskResult> {
const startTime = Date.now();
let contextPrompt = prompt;
if (context.contextHistory.length > 0) {
const contextSection = `BISHERIGE ANALYSE:\n${context.contextHistory.join('\n\n')}\n\nAKTUELLE AUFGABE:\n`;
const combinedPrompt = contextSection + prompt;
if (this.estimateTokens(combinedPrompt) <= this.maxPromptTokens) {
contextPrompt = combinedPrompt;
}
}
try {
const response = await this.callAI(contextPrompt, maxTokens);
const result = {
taskType: 'micro-task',
content: response.trim(),
processingTimeMs: Date.now() - startTime,
success: true
};
this.addAuditEntry(
context,
'micro-task',
'ai-analysis',
{ promptLength: contextPrompt.length, maxTokens },
{ responseLength: response.length },
response.length > 50 ? 80 : 60,
startTime,
{ aiModel: this.config.model, contextUsed: context.contextHistory.length > 0 }
);
return result;
} catch (error) {
const result = {
taskType: 'micro-task',
content: '',
processingTimeMs: Date.now() - startTime,
success: false,
error: error.message
};
this.addAuditEntry(
context,
'micro-task',
'ai-analysis-failed',
{ promptLength: contextPrompt.length, maxTokens },
{ error: error.message },
5,
startTime,
{ aiModel: this.config.model }
);
return result;
}
}
private calculateRecommendationConfidence(
tool: any,
context: AnalysisContext,
taskRelevance: number = 70,
limitations: string[] = []
): ConfidenceMetrics {
const rawSemanticRelevance = context.embeddingsSimilarities.has(tool.name) ?
context.embeddingsSimilarities.get(tool.name)! * 100 : 50;
let enhancedTaskSuitability = taskRelevance;
if (context.mode === 'workflow') {
const toolSelection = context.selectedTools?.find((st: any) => st.tool && st.tool.name === tool.name);
if (toolSelection && tool.phases && Array.isArray(tool.phases) && tool.phases.includes(toolSelection.phase)) {
const phaseBonus = Math.min(15, 100 - taskRelevance);
enhancedTaskSuitability = Math.min(100, taskRelevance + phaseBonus);
}
}
const overall = (
rawSemanticRelevance * this.confidenceConfig.semanticWeight +
enhancedTaskSuitability * this.confidenceConfig.suitabilityWeight
);
const uncertaintyFactors = this.identifyUncertaintyFactors(tool, context, limitations, overall);
const strengthIndicators = this.identifyStrengthIndicators(tool, context, overall);
return {
overall: Math.round(overall),
semanticRelevance: Math.round(rawSemanticRelevance),
taskSuitability: Math.round(enhancedTaskSuitability),
uncertaintyFactors,
strengthIndicators
};
}
private identifyUncertaintyFactors(
tool: any,
context: AnalysisContext,
limitations: string[],
confidence: number
): string[] {
const factors: string[] = [];
if (limitations?.length > 0) {
factors.push(...limitations.slice(0, 2));
}
const similarity = context.embeddingsSimilarities.get(tool.name) || 0.5;
if (similarity < 0.7) {
factors.push('Geringe semantische Ähnlichkeit zur Anfrage');
}
if (tool.skillLevel === 'expert' && /schnell|rapid|triage|urgent|sofort/i.test(context.userQuery)) {
factors.push('Experten-Tool für zeitkritisches Szenario');
}
if (tool.skillLevel === 'novice' && /komplex|erweitert|tiefgehend|advanced|forensisch/i.test(context.userQuery)) {
factors.push('Einsteiger-Tool für komplexe Analyse');
}
if (tool.type === 'software' && !isToolHosted(tool) && tool.accessType === 'download') {
factors.push('Installation und Setup erforderlich');
}
if (tool.license === 'Proprietary') {
factors.push('Kommerzielle Software - Lizenzkosten zu beachten');
}
if (confidence < 60) {
factors.push('Moderate Gesamtbewertung - alternative Ansätze empfohlen');
}
return factors.slice(0, 4);
}
private identifyStrengthIndicators(tool: any, context: AnalysisContext, confidence: number): string[] {
const indicators: string[] = [];
const similarity = context.embeddingsSimilarities.get(tool.name) || 0.5;
if (similarity >= 0.7) {
indicators.push('Sehr gute semantische Übereinstimmung mit Ihrer Anfrage');
}
if (tool.knowledgebase === true) {
indicators.push('Umfassende Dokumentation und Wissensbasis verfügbar');
}
if (isToolHosted(tool)) {
indicators.push('Sofort verfügbar über gehostete Lösung');
}
if (tool.skillLevel === 'intermediate' || tool.skillLevel === 'advanced') {
indicators.push('Ausgewogenes Verhältnis zwischen Funktionalität und Benutzerfreundlichkeit');
}
if (tool.type === 'method' && /methodik|vorgehen|prozess|ansatz/i.test(context.userQuery)) {
indicators.push('Methodischer Ansatz passt zu Ihrer prozeduralen Anfrage');
}
return indicators.slice(0, 4);
}
private async analyzeScenario(context: AnalysisContext): Promise<MicroTaskResult> {
console.log('[AI-PIPELINE] Starting scenario analysis micro-task');
const isWorkflow = context.mode === 'workflow';
const prompt = getPrompt('scenarioAnalysis', isWorkflow, context.userQuery);
const result = await this.callMicroTaskAI(prompt, context, 400);
if (result.success) {
if (isWorkflow) {
context.scenarioAnalysis = result.content;
} else {
context.problemAnalysis = result.content;
}
this.addToContextHistory(context, `${isWorkflow ? 'Szenario' : 'Problem'}-Analyse: ${result.content.slice(0, 200)}...`);
}
return result;
}
private async generateApproach(context: AnalysisContext): Promise<MicroTaskResult> {
console.log('[AI-PIPELINE] Starting investigation approach micro-task');
const isWorkflow = context.mode === 'workflow';
const prompt = getPrompt('investigationApproach', isWorkflow, context.userQuery);
const result = await this.callMicroTaskAI(prompt, context, 400);
if (result.success) {
context.investigationApproach = result.content;
this.addToContextHistory(context, `${isWorkflow ? 'Untersuchungs' : 'Lösungs'}ansatz: ${result.content.slice(0, 200)}...`);
}
return result;
}
private async generateCriticalConsiderations(context: AnalysisContext): Promise<MicroTaskResult> {
console.log('[AI-PIPELINE] Starting critical considerations micro-task');
const isWorkflow = context.mode === 'workflow';
const prompt = getPrompt('criticalConsiderations', isWorkflow, context.userQuery);
const result = await this.callMicroTaskAI(prompt, context, 350);
if (result.success) {
context.criticalConsiderations = result.content;
this.addToContextHistory(context, `Kritische Überlegungen: ${result.content.slice(0, 200)}...`);
}
return result;
}
private async selectToolsForPhase(context: AnalysisContext, phase: any): Promise<MicroTaskResult> {
console.log('[AI-PIPELINE] Starting phase tool selection micro-task for:', phase.id);
const phaseTools = context.filteredData.tools.filter((tool: any) =>
tool && tool.phases && Array.isArray(tool.phases) && tool.phases.includes(phase.id)
);
if (phaseTools.length === 0) {
console.log('[AI-PIPELINE] No tools available for phase:', phase.id);
return {
taskType: 'tool-selection',
content: JSON.stringify([]),
processingTimeMs: 0,
success: true
};
}
const phaseMethods = phaseTools.filter((t: any) => t && t.type === 'method');
const phaseSoftware = phaseTools.filter((t: any) => t && t.type === 'software');
console.log('[AI-PIPELINE] Phase tools available:', phaseMethods.length, 'methods,', phaseSoftware.length, 'software');
const prompt = getPrompt('phaseToolSelection', context.userQuery, phase, phaseTools);
const result = await this.callMicroTaskAI(prompt, context, 1000);
if (result.success) {
const selections = this.safeParseJSON(result.content, []);
if (Array.isArray(selections)) {
const validSelections = selections.filter((sel: any) => {
const matchingTool = phaseTools.find((tool: any) => tool && tool.name === sel.toolName);
if (!matchingTool) {
console.warn('[AI-PIPELINE] Invalid tool selection for phase:', phase.id, sel.toolName);
}
return !!matchingTool;
});
console.log('[AI-PIPELINE] Valid selections for phase:', phase.id, validSelections.length);
validSelections.forEach((sel: any) => {
const tool = phaseTools.find((t: any) => t && t.name === sel.toolName);
if (tool) {
const taskRelevance = typeof sel.taskRelevance === 'number' ?
sel.taskRelevance : parseInt(String(sel.taskRelevance)) || 70;
const priority = this.derivePriorityFromScore(taskRelevance);
this.addToolToSelection(context, tool, phase.id, priority, sel.justification, taskRelevance, sel.limitations);
}
});
this.addAuditEntry(
context,
'micro-task',
'phase-tool-selection',
{ phase: phase.id, availableTools: phaseTools.length },
{
validSelections: validSelections.length,
selectedTools: validSelections.map((s: any) => ({
name: s.toolName,
taskRelevance: s.taskRelevance,
derivedPriority: this.derivePriorityFromScore(s.taskRelevance)
}))
},
validSelections.length > 0 ? 75 : 30,
Date.now() - result.processingTimeMs,
{ phaseName: phase.name }
);
}
}
return result;
}
private async completeUnderrepresentedPhases(
context: AnalysisContext,
toolsData: any,
originalQuery: string
): Promise<void> {
const phases = toolsData.phases || [];
const selectedPhases = new Map<string, number>();
context.selectedTools?.forEach((st: any) => {
const count = selectedPhases.get(st.phase) || 0;
selectedPhases.set(st.phase, count + 1);
});
console.log('[AI-PIPELINE] Phase coverage analysis complete');
const phaseQueryTemplates = this.generatePhaseQueryTemplates(phases);
const underrepresentedPhases = phases.filter((phase: any) => {
const count = selectedPhases.get(phase.id) || 0;
return count <= 1;
});
if (underrepresentedPhases.length === 0) {
console.log('[AI-PIPELINE] All phases adequately represented');
return;
}
console.log('[AI-PIPELINE] Completing underrepresented phases:', underrepresentedPhases.map((p: any) => p.id).join(', '));
for (const phase of underrepresentedPhases) {
await this.completePhaseWithSemanticSearch(context, phase, phaseQueryTemplates, toolsData, originalQuery);
await this.delay(this.microTaskDelay);
}
}
private async completePhaseWithSemanticSearch(
context: AnalysisContext,
phase: any,
phaseQueryTemplates: Record<string, string>,
toolsData: any,
originalQuery: string
): Promise<void> {
const phaseStart = Date.now();
const phaseQuery = phaseQueryTemplates[phase.id] || `forensic ${phase.name.toLowerCase()} tools methods`;
console.log('[AI-PIPELINE] Starting enhanced phase completion micro-task for:', phase.id);
try {
const phaseResults = await embeddingsService.findSimilar(phaseQuery, 20, 0.2);
if (phaseResults.length === 0) {
console.log('[AI-PIPELINE] No semantic results for phase:', phase.id);
return;
}
const toolsMap = new Map(toolsData.tools.map((tool: any) => [tool.name, tool]));
const conceptsMap = new Map(toolsData.concepts.map((concept: any) => [concept.name, concept]));
const phaseTools = phaseResults
.filter((result: any) => result.type === 'tool')
.map((result: any) => toolsMap.get(result.name))
.filter((tool: any): tool is NonNullable<any> =>
tool !== undefined &&
tool !== null &&
tool.phases &&
Array.isArray(tool.phases) &&
tool.phases.includes(phase.id) &&
!context.seenToolNames.has(tool.name)
)
.slice(0, 5);
const phaseConcepts = phaseResults
.filter((result: any) => result.type === 'concept')
.map((result: any) => conceptsMap.get(result.name))
.filter((concept: any): concept is NonNullable<any> => concept !== undefined && concept !== null)
.slice(0, 2);
if (phaseTools.length === 0) {
console.log('[AI-PIPELINE] No suitable tools for phase completion:', phase.id);
return;
}
const selectionPrompt = AI_PROMPTS.generatePhaseCompletionPrompt(originalQuery, phase, phaseTools, phaseConcepts);
const selectionResult = await this.callMicroTaskAI(selectionPrompt, context, 800);
if (!selectionResult.success) {
console.error('[AI-PIPELINE] Phase completion selection failed for:', phase.id);
return;
}
const selection = this.safeParseJSON(selectionResult.content, {
selectedTools: [],
selectedConcepts: [],
completionReasoning: ''
});
const validTools = selection.selectedTools
.map((name: string) => phaseTools.find((t: any) => t && t.name === name))
.filter((tool: any): tool is NonNullable<any> => tool !== undefined && tool !== null)
.slice(0, 2);
if (validTools.length === 0) {
console.log('[AI-PIPELINE] No valid tools selected for phase completion:', phase.id);
return;
}
for (const tool of validTools) {
console.log('[AI-PIPELINE] Generating reasoning for phase completion tool:', tool.name);
const reasoningPrompt = getPrompt(
'phaseCompletionReasoning',
originalQuery,
phase,
tool.name,
tool,
selection.completionReasoning || 'Nachergänzung zur Vervollständigung der Phasenabdeckung'
);
const reasoningResult = await this.callMicroTaskAI(reasoningPrompt, context, 400);
let detailedJustification: string;
if (reasoningResult.success) {
detailedJustification = reasoningResult.content.trim();
} else {
detailedJustification = `Nachträglich hinzugefügt zur Vervollständigung der ${phase.name}-Phase. Die ursprüngliche KI-Auswahl war zu spezifisch und hat wichtige Tools für diese Phase übersehen.`;
}
this.addToolToSelection(
context,
tool,
phase.id,
'medium',
detailedJustification,
75,
['Nachträgliche Ergänzung via semantische Phasensuche']
);
console.log('[AI-PIPELINE] Added phase completion tool with reasoning:', tool.name);
}
this.addAuditEntry(
context,
'validation',
'phase-completion',
{
phase: phase.id,
phaseQuery,
candidatesFound: phaseTools.length,
selectionReasoning: selection.completionReasoning
},
{
toolsAdded: validTools.length,
addedTools: validTools.map((t: any) => ({
name: t.name,
type: t.type,
reasoning: 'Generated via micro-task'
}))
},
validTools.length > 0 ? 80 : 40,
phaseStart,
{
phaseCompletion: true,
semanticSearch: true,
microTaskReasoning: true,
contextualExplanation: true
}
);
} catch (error) {
console.error('[AI-PIPELINE] Enhanced phase completion failed for:', phase.id, error);
this.addAuditEntry(
context,
'validation',
'phase-completion-failed',
{ phase: phase.id, phaseQuery },
{ error: error.message },
10,
phaseStart,
{ phaseCompletion: true, failed: true }
);
}
}
private async evaluateSpecificTool(context: AnalysisContext, tool: any, rank: number): Promise<MicroTaskResult> {
console.log('[AI-PIPELINE] Starting tool evaluation micro-task for:', tool.name);
const existingSelection = context.selectedTools?.find((st: any) => st.tool && st.tool.name === tool.name);
const taskRelevance = existingSelection?.taskRelevance || 70;
const priority = this.derivePriorityFromScore(taskRelevance);
const prompt = getPrompt('toolEvaluation', context.userQuery, tool, rank, taskRelevance);
const result = await this.callMicroTaskAI(prompt, context, 1000);
if (result.success) {
const evaluation = this.safeParseJSON(result.content, {
detailed_explanation: 'Evaluation failed',
implementation_approach: '',
pros: [],
limitations: [],
alternatives: ''
});
this.addToolToSelection(context, {
...tool,
evaluation: {
...evaluation,
rank,
task_relevance: taskRelevance
}
}, 'evaluation', priority, evaluation.detailed_explanation,
taskRelevance, evaluation.limitations);
this.addAuditEntry(
context,
'micro-task',
'tool-evaluation',
{ toolName: tool.name, rank, existingTaskRelevance: taskRelevance },
{
hasExplanation: !!evaluation.detailed_explanation,
hasImplementationApproach: !!evaluation.implementation_approach,
prosCount: evaluation.pros?.length || 0,
limitationsCount: evaluation.limitations?.length || 0
},
70,
Date.now() - result.processingTimeMs,
{ toolType: tool.type }
);
}
return result;
}
private async selectBackgroundKnowledge(context: AnalysisContext): Promise<MicroTaskResult> {
console.log('[AI-PIPELINE] Starting background knowledge selection micro-task');
const availableConcepts = context.filteredData.concepts;
if (availableConcepts.length === 0) {
return {
taskType: 'background-knowledge',
content: JSON.stringify([]),
processingTimeMs: 0,
success: true
};
}
const selectedToolNames = context.selectedTools?.map((st: any) => st.tool && st.tool.name).filter(Boolean) || [];
const prompt = getPrompt('backgroundKnowledgeSelection', context.userQuery, context.mode, selectedToolNames, availableConcepts);
const result = await this.callMicroTaskAI(prompt, context, 700);
if (result.success) {
const selections = this.safeParseJSON(result.content, []);
if (Array.isArray(selections)) {
context.backgroundKnowledge = selections.filter((sel: any) =>
sel.conceptName && availableConcepts.some((concept: any) => concept.name === sel.conceptName)
).map((sel: any) => ({
concept: availableConcepts.find((c: any) => c.name === sel.conceptName),
relevance: sel.relevance
}));
this.addAuditEntry(
context,
'micro-task',
'background-knowledge-selection',
{ availableConcepts: availableConcepts.length },
{ selectedConcepts: context.backgroundKnowledge?.length || 0 },
context.backgroundKnowledge && context.backgroundKnowledge.length > 0 ? 75 : 40,
Date.now() - result.processingTimeMs,
{}
);
}
}
return result;
}
private async generateFinalRecommendations(context: AnalysisContext): Promise<MicroTaskResult> {
console.log('[AI-PIPELINE] Starting final recommendations micro-task');
const selectedToolNames = context.selectedTools?.map((st: any) => st.tool && st.tool.name).filter(Boolean) || [];
const prompt = getPrompt('finalRecommendations', context.mode === 'workflow', context.userQuery, selectedToolNames);
const result = await this.callMicroTaskAI(prompt, context, 350);
return result;
}
private async callAI(prompt: string, maxTokens: number = 1500): Promise<string> {
const endpoint = this.config.endpoint;
const apiKey = this.config.apiKey;
const model = this.config.model;
let headers: Record<string, string> = {
'Content-Type': 'application/json'
};
if (apiKey) {
headers['Authorization'] = `Bearer ${apiKey}`;
}
const requestBody = {
model,
messages: [{ role: 'user', content: prompt }],
max_tokens: maxTokens,
temperature: 0.3
};
try {
const response = await fetch(`${endpoint}/v1/chat/completions`, {
method: 'POST',
headers,
body: JSON.stringify(requestBody)
});
if (!response.ok) {
const errorText = await response.text();
console.error('[AI-PIPELINE] AI API Error:', response.status, errorText);
throw new Error(`AI API error: ${response.status} - ${errorText}`);
}
const data = await response.json();
const content = data.choices?.[0]?.message?.content;
if (!content) {
console.error('[AI-PIPELINE] No response content from AI model');
throw new Error('No response from AI model');
}
return content;
} catch (error) {
console.error('[AI-PIPELINE] AI service call failed:', error.message);
throw error;
}
}
private derivePriorityFromScore(taskRelevance: number): string {
if (taskRelevance >= 80) return 'high';
if (taskRelevance >= 60) return 'medium';
return 'low';
}
private async performAISelection(
filteredData: any,
userQuery: string,
mode: string,
context: AnalysisContext
): Promise<{ tools: any[], concepts: any[] }> {
const result = await this.aiSelectionWithFullData(
userQuery,
filteredData.tools,
filteredData.concepts,
mode,
embeddingsService.isEnabled() ? 'embeddings_candidates' : 'full_dataset',
context
);
console.log('[AI-PIPELINE] AI selection complete:', result.selectedTools.length, 'tools,', result.selectedConcepts.length, 'concepts');
return {
tools: result.selectedTools,
concepts: result.selectedConcepts
};
}
async processQuery(userQuery: string, mode: string): Promise<AnalysisResult> {
const startTime = Date.now();
let completeTasks = 0;
let failedTasks = 0;
console.log('[AI-PIPELINE] Starting', mode, 'query processing');
// CLEAR AUDIT TRAIL for new analysis
auditService.clearAuditTrail();
try {
const toolsData = await getCompressedToolsDataForAI();
const context: AnalysisContext = {
userQuery,
mode,
filteredData: {},
contextHistory: [],
maxContextLength: this.maxContextTokens,
currentContextLength: 0,
seenToolNames: new Set<string>(),
embeddingsSimilarities: new Map<string, number>(),
aiSelectedTools: [],
aiSelectedConcepts: []
};
const filteredData = await this.getIntelligentCandidates(userQuery, toolsData, mode, context);
const aiSelection = await this.performAISelection(filteredData, userQuery, mode, context);
context.aiSelectedTools = aiSelection.tools;
context.aiSelectedConcepts = aiSelection.concepts;
context.filteredData = {
tools: aiSelection.tools,
concepts: aiSelection.concepts,
domains: filteredData.domains,
phases: filteredData.phases,
'domain-agnostic-software': filteredData['domain-agnostic-software']
};
this.addAuditEntry(
context,
'initialization',
'pipeline-start',
{ userQuery, mode, toolsDataLoaded: !!toolsData },
{ candidateTools: filteredData.tools.length, candidateConcepts: filteredData.concepts.length },
90,
startTime,
{ auditEnabled: auditService.isEnabled() }
);
const analysisResult = await this.analyzeScenario(context);
if (analysisResult.success) completeTasks++; else failedTasks++;
await this.delay(this.microTaskDelay);
const approachResult = await this.generateApproach(context);
if (approachResult.success) completeTasks++; else failedTasks++;
await this.delay(this.microTaskDelay);
const considerationsResult = await this.generateCriticalConsiderations(context);
if (considerationsResult.success) completeTasks++; else failedTasks++;
await this.delay(this.microTaskDelay);
if (mode === 'workflow') {
const phases = toolsData.phases || [];
for (const phase of phases) {
const toolSelectionResult = await this.selectToolsForPhase(context, phase);
if (toolSelectionResult.success) completeTasks++; else failedTasks++;
await this.delay(this.microTaskDelay);
}
await this.completeUnderrepresentedPhases(context, toolsData, userQuery);
} else {
const topTools = filteredData.tools.slice(0, 3);
for (let i = 0; i < topTools.length; i++) {
const evaluationResult = await this.evaluateSpecificTool(context, topTools[i], i + 1);
if (evaluationResult.success) completeTasks++; else failedTasks++;
await this.delay(this.microTaskDelay);
}
}
const knowledgeResult = await this.selectBackgroundKnowledge(context);
if (knowledgeResult.success) completeTasks++; else failedTasks++;
await this.delay(this.microTaskDelay);
const finalResult = await this.generateFinalRecommendations(context);
if (finalResult.success) completeTasks++; else failedTasks++;
const recommendation = this.buildRecommendation(context, mode, finalResult.content);
this.addAuditEntry(
context,
'completion',
'pipeline-end',
{ completedTasks: completeTasks, failedTasks },
{ finalRecommendation: !!recommendation, auditEntriesGenerated: auditService.getCurrentAuditTrail().length },
completeTasks > failedTasks ? 85 : 60,
startTime,
{ totalProcessingTimeMs: Date.now() - startTime }
);
const processingStats = {
embeddingsUsed: embeddingsService.isEnabled(),
candidatesFromEmbeddings: filteredData.tools.length,
finalSelectedItems: (context.selectedTools?.length || 0) + (context.backgroundKnowledge?.length || 0),
processingTimeMs: Date.now() - startTime,
microTasksCompleted: completeTasks,
microTasksFailed: failedTasks,
contextContinuityUsed: true
};
console.log('[AI-PIPELINE] Processing complete. Tasks completed:', completeTasks, 'failed:', failedTasks);
// FINALIZE AUDIT TRAIL and get final trail
const finalAuditTrail = auditService.finalizeAuditTrail();
return {
recommendation: {
...recommendation,
auditTrail: auditService.isEnabled() ? finalAuditTrail : undefined
},
processingStats
};
} catch (error) {
console.error('[AI-PIPELINE] Processing failed:', error);
throw error;
}
}
private buildRecommendation(context: AnalysisContext, mode: string, finalContent: string): any {
const isWorkflow = mode === 'workflow';
console.log('[AI-PIPELINE] Building recommendation for', mode, 'mode with', context.selectedTools?.length || 0, 'tools');
if (context.selectedTools && context.selectedTools.length > 0) {
const methods = context.selectedTools.filter((st: any) => st.tool && st.tool.type === 'method');
const software = context.selectedTools.filter((st: any) => st.tool && st.tool.type === 'software');
console.log('[AI-PIPELINE] Final selection breakdown:', methods.length, 'methods,', software.length, 'software');
console.log('[AI-PIPELINE] Method names:', methods.map((m: any) => m.tool.name).join(', '));
console.log('[AI-PIPELINE] Software names:', software.map((s: any) => s.tool.name).join(', '));
context.selectedTools.forEach((st: any, index: number) => {
console.log('[AI-PIPELINE] Selected tool', index + 1, ':', st.tool.name, '(' + st.tool.type + ') - Phase:', st.phase, ', Priority:', st.priority);
});
} else {
console.warn('[AI-PIPELINE] WARNING: No tools in selectedTools array!');
}
const base = {
[isWorkflow ? 'scenario_analysis' : 'problem_analysis']:
isWorkflow ? context.scenarioAnalysis : context.problemAnalysis,
investigation_approach: context.investigationApproach,
critical_considerations: context.criticalConsiderations,
background_knowledge: context.backgroundKnowledge?.map((bk: any) => ({
concept_name: bk.concept.name,
relevance: bk.relevance
})) || []
};
if (isWorkflow) {
const recommendedToolsWithConfidence = context.selectedTools?.map((st: any) => {
const confidence = this.calculateRecommendationConfidence(
st.tool,
context,
st.taskRelevance || 70,
st.limitations || []
);
this.addAuditEntry(
context,
'validation',
'confidence-scoring',
{ toolName: st.tool.name, toolType: st.tool.type, phase: st.phase },
{
overall: confidence.overall,
components: {
semantic: confidence.semanticRelevance,
suitability: confidence.taskSuitability,
}
},
confidence.overall,
Date.now(),
{ uncertaintyCount: confidence.uncertaintyFactors.length, strengthCount: confidence.strengthIndicators.length }
);
return {
name: st.tool.name,
type: st.tool.type,
phase: st.phase,
priority: st.priority,
justification: st.justification || `Empfohlen für ${st.phase}`,
confidence: confidence,
recommendationStrength: confidence.overall >= this.confidenceConfig.highThreshold ? 'strong' :
confidence.overall >= this.confidenceConfig.mediumThreshold ? 'moderate' : 'weak'
};
}) || [];
return {
...base,
recommended_tools: recommendedToolsWithConfidence,
workflow_suggestion: finalContent
};
} else {
const recommendedToolsWithConfidence = context.selectedTools?.map((st: any) => {
const confidence = this.calculateRecommendationConfidence(
st.tool,
context,
st.taskRelevance || 70,
st.limitations || []
);
this.addAuditEntry(
context,
'validation',
'confidence-scoring',
{ toolName: st.tool.name, toolType: st.tool.type, rank: st.tool.evaluation?.rank || 1 },
{
overall: confidence.overall,
suitabilityAlignment: st.priority === 'high' && confidence.overall >= this.confidenceConfig.highThreshold
},
confidence.overall,
Date.now(),
{ strengthCount: confidence.strengthIndicators.length }
);
return {
name: st.tool.name,
type: st.tool.type,
rank: st.tool.evaluation?.rank || 1,
suitability_score: st.priority,
detailed_explanation: st.tool.evaluation?.detailed_explanation || '',
implementation_approach: st.tool.evaluation?.implementation_approach || '',
pros: st.tool.evaluation?.pros || [],
cons: st.tool.evaluation?.limitations || [],
alternatives: st.tool.evaluation?.alternatives || '',
confidence: confidence,
recommendationStrength: confidence.overall >= this.confidenceConfig.highThreshold ? 'strong' :
confidence.overall >= this.confidenceConfig.mediumThreshold ? 'moderate' : 'weak'
};
}) || [];
return {
...base,
recommended_tools: recommendedToolsWithConfidence,
additional_considerations: finalContent
};
}
}
}
const aiPipeline = new ImprovedMicroTaskAIPipeline();
export { aiPipeline, type AnalysisResult };