# Forensic-Grade RAG Implementation Roadmap ## Context & Current State Analysis You have access to a forensic tools recommendation system built with: - **Embeddings-based retrieval** (src/utils/embeddings.ts) - **Multi-stage AI pipeline** (src/utils/aiPipeline.ts) - **Micro-task processing** for detailed analysis - **Rate limiting and queue management** (src/utils/rateLimitedQueue.ts) - **YAML-based tool database** (src/data/tools.yaml) **Current Architecture**: Basic RAG (Retrieve → AI Selection → Micro-task Generation) **Target Architecture**: Forensic-Grade RAG with transparency, objectivity, and reproducibility ## Implementation Roadmap ### PHASE 1: Configuration Externalization & AI Architecture Enhancement (Weeks 1-2) #### 1.1 Complete Configuration Externalization **Objective**: Remove all hard-coded values from codebase (except AI prompts) **Tasks**: 1. **Create comprehensive configuration schema** in `src/config/` - `forensic-scoring.yaml` - All scoring criteria, weights, thresholds - `ai-models.yaml` - AI model configurations and routing - `system-parameters.yaml` - Rate limits, queue settings, processing parameters - `validation-criteria.yaml` - Expert validation rules, bias detection parameters 2. **Implement configuration loader** (`src/utils/configLoader.ts`) - Hot-reload capability for configuration changes - Environment-specific overrides (dev/staging/prod) - Configuration validation and schema enforcement - Default fallbacks for missing values 3. **Audit existing codebase** for hard-coded values: - Search for literal numbers, strings, arrays in TypeScript files - Extract to configuration files with meaningful names - Ensure all thresholds (similarity scores, rate limits, token counts) are configurable #### 1.2 Dual AI Model Architecture Implementation **Objective**: Implement large + small model strategy for optimal cost/performance **Tasks**: 1. **Extend environment configuration**: ``` # Strategic Analysis Model (Large, Few Tokens) AI_STRATEGIC_ENDPOINT= AI_STRATEGIC_API_KEY= AI_STRATEGIC_MODEL=mistral-large-latest AI_STRATEGIC_MAX_TOKENS=500 AI_STRATEGIC_CONTEXT_WINDOW=32000 # Content Generation Model (Small, Many Tokens) AI_CONTENT_ENDPOINT= AI_CONTENT_API_KEY= AI_CONTENT_MODEL=mistral-small-latest AI_CONTENT_MAX_TOKENS=2000 AI_CONTENT_CONTEXT_WINDOW=8000 ``` 2. **Create AI router** (`src/utils/aiRouter.ts`): - Route different task types to appropriate models - **Strategic tasks** → Large model: tool selection, bias analysis, methodology decisions - **Content tasks** → Small model: descriptions, explanations, micro-task outputs - Automatic fallback logic if primary model fails - Usage tracking and cost optimization 3. **Update aiPipeline.ts**: - Replace single `callAI()` method with task-specific methods - Implement intelligent routing based on task complexity - Add token estimation for optimal model selection ### PHASE 2: Evidence-Based Scoring Framework (Weeks 3-5) #### 2.1 Forensic Scoring Engine Implementation **Objective**: Replace subjective AI selection with objective, measurable criteria **Tasks**: 1. **Create scoring framework** (`src/scoring/ForensicScorer.ts`): ```typescript interface ScoringCriterion { name: string; weight: number; methodology: string; dataSources: string[]; calculator: (tool: Tool, scenario: Scenario) => Promise; } interface CriterionScore { value: number; // 0-100 confidence: number; // 0-100 evidence: Evidence[]; lastUpdated: Date; } ``` 2. **Implement core scoring criteria**: - **Court Admissibility Scorer**: Based on legal precedent database - **Scientific Validity Scorer**: Based on peer-reviewed research citations - **Methodology Alignment Scorer**: NIST SP 800-86 compliance assessment - **Expert Consensus Scorer**: Practitioner survey data integration - **Error Rate Scorer**: Known false positive/negative rates 3. **Build evidence provenance system**: - Track source of every score component - Maintain citation database for all claims - Version control for scoring methodologies - Automatic staleness detection for outdated evidence #### 2.2 Deterministic Core Implementation **Objective**: Ensure reproducible results for identical inputs **Tasks**: 1. **Implement deterministic pipeline** (`src/analysis/DeterministicAnalyzer.ts`): - Rule-based scenario classification (SCADA/Mobile/Network/etc.) - Mathematical scoring combination (weighted averages, not AI decisions) - Consistent tool ranking algorithms - Reproducibility validation tests 2. **Add AI enhancement layer**: - AI provides explanations, NOT decisions - AI generates workflow descriptions based on deterministic selections - AI creates contextual advice around objective tool choices ### PHASE 3: Transparency & Audit Trail System (Weeks 4-6) #### 3.1 Complete Audit Trail Implementation **Objective**: Track every decision with forensic-grade documentation **Tasks**: 1. **Create audit framework** (`src/audit/AuditTrail.ts`): ```typescript interface ForensicAuditTrail { queryId: string; userQuery: string; processingSteps: AuditStep[]; finalRecommendation: RecommendationWithEvidence; reproducibilityHash: string; validationStatus: ValidationStatus; } interface AuditStep { stepName: string; input: any; methodology: string; output: any; evidence: Evidence[]; confidence: number; processingTime: number; modelUsed?: string; } ``` 2. **Implement evidence citation system**: - Automatic citation generation for all claims - Link to source standards (NIST, ISO, RFC) - Reference scientific papers for methodology choices - Track expert validation contributors 3. **Build explanation generator**: - Human-readable reasoning for every recommendation - "Why this tool" and "Why not alternatives" explanations - Confidence level communication - Uncertainty quantification #### 3.2 Bias Detection & Mitigation System **Objective**: Actively detect and correct recommendation biases **Tasks**: 1. **Implement bias detection** (`src/bias/BiasDetector.ts`): - **Popularity bias**: Over-recommendation of well-known tools - **Availability bias**: Preference for easily accessible tools - **Recency bias**: Over-weighting of newest tools - **Cultural bias**: Platform or methodology preferences 2. **Create mitigation strategies**: - Automatic bias adjustment algorithms - Diversity requirements for recommendations - Fairness metrics across tool categories - Bias reporting in audit trails ### PHASE 4: Expert Validation & Learning System (Weeks 6-8) #### 4.1 Expert Review Integration **Objective**: Enable forensic experts to validate and improve recommendations **Tasks**: 1. **Build expert validation interface** (`src/validation/ExpertReview.ts`): - Structured feedback collection from forensic practitioners - Agreement/disagreement tracking with detailed reasoning - Expert consensus building over time - Minority opinion preservation 2. **Implement validation loop**: - Flag recommendations requiring expert review - Track expert validation rates and patterns - Update scoring based on real-world feedback - Methodology improvement based on expert input #### 4.2 Real-World Case Learning **Objective**: Learn from actual forensic investigations **Tasks**: 1. **Create case study integration** (`src/learning/CaseStudyLearner.ts`): - Anonymous case outcome tracking - Tool effectiveness measurement in real scenarios - Methodology success/failure analysis - Continuous improvement based on field results 2. **Implement feedback loops**: - Post-case recommendation validation - Tool performance tracking in actual investigations - Methodology refinement based on outcomes - Success rate improvement over time ### PHASE 5: Advanced Features & Scientific Rigor (Weeks 7-10) #### 5.1 Confidence & Uncertainty Quantification **Objective**: Provide scientific confidence levels for all recommendations **Tasks**: 1. **Implement uncertainty quantification** (`src/uncertainty/ConfidenceCalculator.ts`): - Statistical confidence intervals for scores - Uncertainty propagation through scoring pipeline - Risk assessment for recommendation reliability - Alternative recommendation ranking 2. **Add fallback recommendation system**: - Multiple ranked alternatives for each recommendation - Contingency planning for tool failures - Risk-based recommendation portfolios - Sensitivity analysis for critical decisions #### 5.2 Reproducibility Testing Framework **Objective**: Ensure consistent results across time and implementations **Tasks**: 1. **Build reproducibility testing** (`src/testing/ReproducibilityTester.ts`): - Automated consistency validation - Inter-rater reliability testing - Cross-temporal stability analysis - Version control for methodology changes 2. **Implement quality assurance**: - Continuous integration for reproducibility - Regression testing for methodology changes - Performance monitoring for consistency - Alert system for unexpected variations ### PHASE 6: Integration & Production Readiness (Weeks 9-12) #### 6.1 System Integration **Objective**: Integrate all forensic-grade components seamlessly **Tasks**: 1. **Update existing components**: - Modify `aiPipeline.ts` to use new scoring framework - Update `embeddings.ts` with evidence tracking - Enhance `rateLimitedQueue.ts` with audit capabilities - Refactor `query.ts` API to return audit trails 2. **Performance optimization**: - Caching strategies for expensive evidence lookups - Parallel processing for scoring criteria - Efficient storage for audit trails - Load balancing for dual AI models #### 6.2 Production Features **Objective**: Make system ready for professional forensic use **Tasks**: 1. **Add professional features**: - Export recommendations to forensic report formats - Integration with existing forensic workflows - Batch processing for multiple scenarios - API endpoints for external tool integration 2. **Implement monitoring & maintenance**: - Health checks for all system components - Performance monitoring for response times - Error tracking and alerting - Automatic system updates for new evidence ## Technical Implementation Guidelines ### Configuration Management - Use YAML files for human-readable configuration - Implement JSON Schema validation for all config files - Support environment variable overrides - Hot-reload for development, restart for production changes ### AI Model Routing Strategy ```typescript // Task Classification for Model Selection const AI_TASK_ROUTING = { strategic: ['tool-selection', 'bias-analysis', 'methodology-decisions'], content: ['descriptions', 'explanations', 'micro-tasks', 'workflows'] }; // Cost Optimization Logic if (taskComplexity === 'high' && responseTokens < 500) { useModel = 'large'; } else if (taskComplexity === 'low' && responseTokens > 1000) { useModel = 'small'; } else { useModel = config.defaultModel; } ``` ### Evidence Database Structure ```typescript interface EvidenceSource { type: 'standard' | 'paper' | 'case-law' | 'expert-survey'; citation: string; reliability: number; lastValidated: Date; content: string; metadata: Record; } ``` ### Quality Assurance Requirements - All scoring criteria must have documented methodologies - Every recommendation must include confidence levels - All AI-generated content must be marked as such - Reproducibility tests must pass with >95% consistency - Expert validation rate must exceed 80% for production use ## Success Metrics ### Forensic Quality Metrics - **Transparency**: 100% of decisions traceable to evidence - **Objectivity**: <5% variance in scoring between runs - **Reproducibility**: >95% identical results for identical inputs - **Expert Agreement**: >80% expert validation rate - **Bias Reduction**: <10% bias score across all categories ### Performance Metrics - **Response Time**: <30 seconds for workflow recommendations - **Accuracy**: >90% real-world case validation success - **Coverage**: Support for >95% of common forensic scenarios - **Reliability**: <1% system error rate - **Cost Efficiency**: <50% cost reduction vs. single large model ## Risk Mitigation ### Technical Risks - **AI Model Failures**: Implement robust fallback mechanisms - **Configuration Errors**: Comprehensive validation and testing - **Performance Issues**: Load testing and optimization - **Data Corruption**: Backup and recovery procedures ### Forensic Risks - **Bias Introduction**: Continuous monitoring and expert validation - **Methodology Errors**: Peer review and scientific validation - **Legal Challenges**: Ensure compliance with admissibility standards - **Expert Disagreement**: Transparent uncertainty communication