forensic-ai #4
276
.env.example
276
.env.example
@ -1,17 +1,17 @@
|
||||
# ============================================================================
|
||||
# ForensicPathways Environment Configuration
|
||||
# ForensicPathways Environment Configuration - COMPLETE
|
||||
# ============================================================================
|
||||
# Copy this file to .env and adjust the values below.
|
||||
# Settings are ordered by likelihood of needing adjustment during setup.
|
||||
# This file covers ALL environment variables used in the codebase.
|
||||
|
||||
# ============================================================================
|
||||
# 1. CORE APPLICATION SETTINGS (REQUIRED - ADJUST FOR YOUR SETUP)
|
||||
# 1. CORE APPLICATION SETTINGS (REQUIRED)
|
||||
# ============================================================================
|
||||
|
||||
# Your application's public URL (used for redirects and links)
|
||||
PUBLIC_BASE_URL=http://localhost:4321
|
||||
|
||||
# Application environment (development, production, staging)
|
||||
# Application environment
|
||||
NODE_ENV=development
|
||||
|
||||
# Secret key for session encryption (CHANGE IN PRODUCTION!)
|
||||
@ -22,19 +22,99 @@ AUTH_SECRET=your-secret-key-change-in-production-please
|
||||
# ============================================================================
|
||||
|
||||
# Main AI Analysis Service (for query processing and recommendations)
|
||||
# Example uses Mistral AI - adjust endpoint/model as needed
|
||||
AI_ANALYZER_ENDPOINT=https://api.mistral.ai/v1
|
||||
AI_ANALYZER_API_KEY=your-mistral-api-key-here
|
||||
AI_ANALYZER_MODEL=mistral-small-latest
|
||||
# Examples: http://localhost:11434 (Ollama), https://api.mistral.ai, https://api.openai.com
|
||||
AI_ANALYZER_ENDPOINT=https://api.mistral.ai/v1/chat/completions
|
||||
AI_ANALYZER_API_KEY=
|
||||
AI_ANALYZER_MODEL=mistral/mistral-small-latest
|
||||
|
||||
# Vector Embeddings Service (for semantic search - can use same provider)
|
||||
# Vector Embeddings Service (for semantic search)
|
||||
# Leave API_KEY empty for Ollama, use actual key for cloud services
|
||||
AI_EMBEDDINGS_ENABLED=true
|
||||
AI_EMBEDDINGS_ENDPOINT=https://api.mistral.ai/v1/embeddings
|
||||
AI_EMBEDDINGS_API_KEY=your-mistral-api-key-here
|
||||
AI_EMBEDDINGS_API_KEY=
|
||||
AI_EMBEDDINGS_MODEL=mistral-embed
|
||||
|
||||
# ============================================================================
|
||||
# 3. AUTHENTICATION (OPTIONAL - SET TO 'true' IF NEEDED)
|
||||
# 3. AI PIPELINE CONFIGURATION (CONTEXT & PERFORMANCE TUNING)
|
||||
# ============================================================================
|
||||
|
||||
# === SIMILARITY SEARCH STAGE ===
|
||||
# How many similar tools/concepts embeddings search returns as candidates
|
||||
# 🔍 This is the FIRST filter - vector similarity matching
|
||||
# Lower = faster, less comprehensive | Higher = slower, more comprehensive
|
||||
AI_EMBEDDING_CANDIDATES=40
|
||||
|
||||
# Minimum similarity score threshold (0.0-1.0)
|
||||
# Lower = more results but less relevant | Higher = fewer but more relevant
|
||||
AI_SIMILARITY_THRESHOLD=0.3
|
||||
|
||||
# === AI SELECTION STAGE ===
|
||||
# Maximum tools the AI can select from embedding candidates
|
||||
# 🤖 This is the SECOND filter - AI intelligent selection
|
||||
# Should be ≤ AI_EMBEDDING_CANDIDATES
|
||||
AI_MAX_SELECTED_ITEMS=25
|
||||
|
||||
# Maximum tools sent to AI for detailed analysis (micro-tasks)
|
||||
# 📋 This is the FINAL context size sent to AI models
|
||||
# Lower = less AI context, faster responses | Higher = more context, slower
|
||||
AI_MAX_TOOLS_TO_ANALYZE=20
|
||||
|
||||
# Maximum concepts sent to AI for background knowledge selection
|
||||
# 📚 Concepts are smaller than tools, so can be higher
|
||||
AI_MAX_CONCEPTS_TO_ANALYZE=10
|
||||
|
||||
# === CONTEXT FLOW SUMMARY ===
|
||||
# 1. Vector Search: 111 total tools → AI_EMBEDDING_CANDIDATES (40) most similar
|
||||
# 2. AI Selection: 40 candidates → AI_MAX_SELECTED_ITEMS (25) best matches
|
||||
# 3. AI Analysis: 25 selected → AI_MAX_TOOLS_TO_ANALYZE (20) for micro-tasks
|
||||
# 4. Final Output: Recommendations based on analyzed subset
|
||||
|
||||
# ============================================================================
|
||||
# 4. AI PERFORMANCE & RATE LIMITING
|
||||
# ============================================================================
|
||||
|
||||
# === USER RATE LIMITS (per minute) ===
|
||||
# Main queries per user per minute
|
||||
AI_RATE_LIMIT_MAX_REQUESTS=4
|
||||
|
||||
# Total AI micro-task calls per user per minute (across all micro-tasks)
|
||||
AI_MICRO_TASK_TOTAL_LIMIT=30
|
||||
|
||||
# === PIPELINE TIMING ===
|
||||
# Delay between micro-tasks within a single query (milliseconds)
|
||||
# Higher = gentler on AI service | Lower = faster responses
|
||||
AI_MICRO_TASK_DELAY_MS=500
|
||||
|
||||
# Delay between queued requests (milliseconds)
|
||||
AI_RATE_LIMIT_DELAY_MS=2000
|
||||
|
||||
# === EMBEDDINGS BATCH PROCESSING ===
|
||||
# How many embeddings to generate per API call
|
||||
AI_EMBEDDINGS_BATCH_SIZE=10
|
||||
|
||||
# Delay between embedding batches (milliseconds)
|
||||
AI_EMBEDDINGS_BATCH_DELAY_MS=1000
|
||||
|
||||
# ============================================================================
|
||||
# 5. AI CONTEXT & TOKEN MANAGEMENT
|
||||
# ============================================================================
|
||||
|
||||
# Maximum context tokens to maintain across micro-tasks
|
||||
# Controls how much conversation history is preserved between AI calls
|
||||
AI_MAX_CONTEXT_TOKENS=3000
|
||||
|
||||
# Maximum tokens per individual AI prompt
|
||||
# Larger = more context per call | Smaller = faster responses
|
||||
AI_MAX_PROMPT_TOKENS=1200
|
||||
|
||||
# Timeout for individual micro-tasks (milliseconds)
|
||||
AI_MICRO_TASK_TIMEOUT_MS=25000
|
||||
|
||||
# Maximum size of the processing queue
|
||||
AI_QUEUE_MAX_SIZE=50
|
||||
|
||||
# ============================================================================
|
||||
# 6. AUTHENTICATION & AUTHORIZATION (OPTIONAL)
|
||||
# ============================================================================
|
||||
|
||||
# Enable authentication for different features
|
||||
@ -48,30 +128,47 @@ OIDC_CLIENT_ID=your-client-id
|
||||
OIDC_CLIENT_SECRET=your-client-secret
|
||||
|
||||
# ============================================================================
|
||||
# 4. ADVANCED AI CONFIGURATION (FINE-TUNING - DEFAULT VALUES USUALLY WORK)
|
||||
# 7. FILE UPLOADS - NEXTCLOUD INTEGRATION (OPTIONAL)
|
||||
# ============================================================================
|
||||
|
||||
# Pipeline Performance Settings
|
||||
AI_MAX_SELECTED_ITEMS=60 # Tools analyzed per micro-task
|
||||
AI_EMBEDDING_CANDIDATES=60 # Vector search candidates
|
||||
AI_MICRO_TASK_DELAY_MS=500 # Delay between AI micro-tasks
|
||||
# Nextcloud server for file uploads (knowledgebase contributions)
|
||||
# Leave empty to disable file upload functionality
|
||||
NEXTCLOUD_ENDPOINT=https://your-nextcloud.com
|
||||
|
||||
# Rate Limiting (requests per minute)
|
||||
AI_RATE_LIMIT_MAX_REQUESTS=6 # Main query rate limit
|
||||
AI_MICRO_TASK_RATE_LIMIT=15 # Micro-task rate limit
|
||||
AI_RATE_LIMIT_DELAY_MS=3000 # Delay between rate-limited calls
|
||||
# Nextcloud credentials (app password recommended)
|
||||
NEXTCLOUD_USERNAME=your-username
|
||||
NEXTCLOUD_PASSWORD=your-app-password
|
||||
|
||||
# Embeddings Batch Processing
|
||||
AI_EMBEDDINGS_BATCH_SIZE=20 # Embeddings processed per batch
|
||||
AI_EMBEDDINGS_BATCH_DELAY_MS=1000 # Delay between embedding batches
|
||||
# Upload directory on Nextcloud (will be created if doesn't exist)
|
||||
NEXTCLOUD_UPLOAD_PATH=/kb-media
|
||||
|
||||
# Timeouts and Limits
|
||||
AI_MICRO_TASK_TIMEOUT_MS=25000 # Max time per micro-task
|
||||
AI_QUEUE_MAX_SIZE=50 # Max queued requests
|
||||
AI_SIMILARITY_THRESHOLD=0.3 # Vector similarity threshold
|
||||
# Public URL base for sharing uploaded files
|
||||
# Usually your Nextcloud base URL + share path
|
||||
NEXTCLOUD_PUBLIC_URL=https://your-nextcloud.com/s/
|
||||
|
||||
# ============================================================================
|
||||
# 5. FORENSIC AUDIT SYSTEM (OPTIONAL - FOR TRANSPARENCY AND DEBUGGING)
|
||||
# 8. GIT CONTRIBUTIONS - ISSUE CREATION (OPTIONAL)
|
||||
# ============================================================================
|
||||
|
||||
# Git provider: gitea, github, or gitlab
|
||||
GIT_PROVIDER=gitea
|
||||
|
||||
# Repository URL (used to extract owner/name)
|
||||
# Example: https://git.example.com/owner/forensic-pathways.git
|
||||
GIT_REPO_URL=https://git.example.com/owner/forensic-pathways.git
|
||||
|
||||
# API endpoint for your git provider
|
||||
# Gitea: https://git.example.com/api/v1
|
||||
# GitHub: https://api.github.com
|
||||
# GitLab: https://gitlab.example.com/api/v4
|
||||
GIT_API_ENDPOINT=https://git.example.com/api/v1
|
||||
|
||||
# Personal access token or API token for creating issues
|
||||
# Generate this in your git provider's settings
|
||||
GIT_API_TOKEN=your-git-api-token
|
||||
|
||||
# ============================================================================
|
||||
# 9. AUDIT & DEBUGGING (OPTIONAL)
|
||||
# ============================================================================
|
||||
|
||||
# Enable detailed audit trail of AI decision-making
|
||||
@ -80,38 +177,49 @@ FORENSIC_AUDIT_ENABLED=false
|
||||
# Audit detail level: minimal, standard, verbose
|
||||
FORENSIC_AUDIT_DETAIL_LEVEL=standard
|
||||
|
||||
# Audit retention and limits
|
||||
FORENSIC_AUDIT_RETENTION_HOURS=72 # Keep audit data for 3 days
|
||||
FORENSIC_AUDIT_MAX_ENTRIES=50 # Max entries per request
|
||||
# Audit retention time (hours)
|
||||
FORENSIC_AUDIT_RETENTION_HOURS=24
|
||||
|
||||
# Maximum audit entries per request
|
||||
FORENSIC_AUDIT_MAX_ENTRIES=50
|
||||
|
||||
# Enable detailed AI pipeline logging
|
||||
AI_PIPELINE_DEBUG=false
|
||||
|
||||
# Enable performance metrics collection
|
||||
AI_PERFORMANCE_METRICS=false
|
||||
|
||||
# Enable detailed micro-task debugging
|
||||
AI_MICRO_TASK_DEBUG=false
|
||||
|
||||
# ============================================================================
|
||||
# 6. QUALITY CONTROL AND BIAS DETECTION (OPTIONAL - ADVANCED FEATURES)
|
||||
# 10. QUALITY CONTROL & BIAS DETECTION (ADVANCED)
|
||||
# ============================================================================
|
||||
|
||||
# Confidence Scoring Weights (must sum to 1.0)
|
||||
# Confidence scoring weights (must sum to 1.0)
|
||||
CONFIDENCE_EMBEDDINGS_WEIGHT=0.3
|
||||
CONFIDENCE_CONSENSUS_WEIGHT=0.25
|
||||
CONFIDENCE_DOMAIN_MATCH_WEIGHT=0.25
|
||||
CONFIDENCE_FRESHNESS_WEIGHT=0.2
|
||||
|
||||
# Confidence Thresholds (0-100)
|
||||
# Confidence thresholds (0-100)
|
||||
CONFIDENCE_MINIMUM_THRESHOLD=40
|
||||
CONFIDENCE_MEDIUM_THRESHOLD=60
|
||||
CONFIDENCE_HIGH_THRESHOLD=80
|
||||
|
||||
# Bias Detection Settings
|
||||
# Bias detection settings
|
||||
BIAS_DETECTION_ENABLED=false
|
||||
BIAS_POPULARITY_THRESHOLD=0.7 # Detect over-popular tools
|
||||
BIAS_DIVERSITY_MINIMUM=0.6 # Require recommendation diversity
|
||||
BIAS_CELEBRITY_TOOLS="Volatility 3,Wireshark,Autopsy,Maltego"
|
||||
BIAS_POPULARITY_THRESHOLD=0.7
|
||||
BIAS_DIVERSITY_MINIMUM=0.6
|
||||
BIAS_CELEBRITY_TOOLS=""
|
||||
|
||||
# Quality Control Thresholds
|
||||
QUALITY_MIN_RESPONSE_LENGTH=50 # Minimum AI response length
|
||||
QUALITY_MIN_SELECTION_COUNT=1 # Minimum tools selected
|
||||
QUALITY_MAX_PROCESSING_TIME_MS=30000 # Max processing time
|
||||
# Quality control thresholds
|
||||
QUALITY_MIN_RESPONSE_LENGTH=50
|
||||
QUALITY_MIN_SELECTION_COUNT=1
|
||||
QUALITY_MAX_PROCESSING_TIME_MS=30000
|
||||
|
||||
# ============================================================================
|
||||
# 7. USER INTERFACE PREFERENCES (OPTIONAL - UI DEFAULTS)
|
||||
# 11. USER INTERFACE DEFAULTS (OPTIONAL)
|
||||
# ============================================================================
|
||||
|
||||
# Default UI behavior (users can override)
|
||||
@ -121,34 +229,76 @@ UI_SHOW_BIAS_WARNINGS=true
|
||||
UI_AUDIT_TRAIL_COLLAPSIBLE=true
|
||||
|
||||
# ============================================================================
|
||||
# 8. EXTERNAL INTEGRATIONS (OPTIONAL - ONLY IF USING THESE SERVICES)
|
||||
# 12. CACHING & PERFORMANCE (OPTIONAL)
|
||||
# ============================================================================
|
||||
|
||||
# Nextcloud Integration (for file uploads)
|
||||
# NEXTCLOUD_ENDPOINT=https://your-nextcloud.com
|
||||
# NEXTCLOUD_USERNAME=your-username
|
||||
# NEXTCLOUD_PASSWORD=your-password
|
||||
# NEXTCLOUD_UPLOAD_PATH=/kb-media
|
||||
# NEXTCLOUD_PUBLIC_URL=https://your-nextcloud.com/s/
|
||||
# Cache AI responses (milliseconds)
|
||||
AI_RESPONSE_CACHE_TTL_MS=3600000
|
||||
|
||||
# Queue cleanup interval (milliseconds)
|
||||
AI_QUEUE_CLEANUP_INTERVAL_MS=300000
|
||||
|
||||
# ============================================================================
|
||||
# 9. PERFORMANCE AND MONITORING (OPTIONAL - FOR PRODUCTION OPTIMIZATION)
|
||||
# PERFORMANCE TUNING PRESETS
|
||||
# ============================================================================
|
||||
|
||||
# Caching and Queue Management
|
||||
AI_RESPONSE_CACHE_TTL_MS=3600000 # Cache responses for 1 hour
|
||||
AI_QUEUE_CLEANUP_INTERVAL_MS=300000 # Cleanup queue every 5 minutes
|
||||
# 🚀 FOR FASTER RESPONSES (less comprehensive):
|
||||
# AI_EMBEDDING_CANDIDATES=20
|
||||
# AI_MAX_SELECTED_ITEMS=15
|
||||
# AI_MAX_TOOLS_TO_ANALYZE=10
|
||||
# AI_MICRO_TASK_DELAY_MS=200
|
||||
# AI_MAX_CONTEXT_TOKENS=2000
|
||||
|
||||
# Debug and Monitoring
|
||||
AI_MICRO_TASK_DEBUG=false # Enable detailed micro-task logging
|
||||
AI_PERFORMANCE_METRICS=false # Enable performance tracking
|
||||
# 🎯 FOR BETTER QUALITY (more comprehensive):
|
||||
# AI_EMBEDDING_CANDIDATES=60
|
||||
# AI_MAX_SELECTED_ITEMS=40
|
||||
# AI_MAX_TOOLS_TO_ANALYZE=30
|
||||
# AI_MICRO_TASK_DELAY_MS=800
|
||||
# AI_MAX_CONTEXT_TOKENS=4000
|
||||
|
||||
# 🔋 FOR LOW-POWER SYSTEMS (minimal resources):
|
||||
# AI_EMBEDDING_CANDIDATES=15
|
||||
# AI_MAX_SELECTED_ITEMS=10
|
||||
# AI_MAX_TOOLS_TO_ANALYZE=8
|
||||
# AI_RATE_LIMIT_MAX_REQUESTS=2
|
||||
# AI_MICRO_TASK_DELAY_MS=1000
|
||||
|
||||
# ============================================================================
|
||||
# SETUP CHECKLIST:
|
||||
# FEATURE COMBINATIONS GUIDE
|
||||
# ============================================================================
|
||||
# 1. Set PUBLIC_BASE_URL to your domain
|
||||
# 2. Change AUTH_SECRET to a secure random string
|
||||
# 3. Configure AI service endpoints and API keys
|
||||
# 4. Set authentication options if needed
|
||||
# 5. Test with default advanced settings before adjusting
|
||||
|
||||
# 📝 BASIC SETUP (AI only):
|
||||
# - Configure AI_ANALYZER_* and AI_EMBEDDINGS_*
|
||||
# - Leave authentication, file uploads, and git disabled
|
||||
|
||||
# 🔐 WITH AUTHENTICATION:
|
||||
# - Set AUTHENTICATION_NECESSARY_* to true
|
||||
# - Configure OIDC_* settings
|
||||
|
||||
# 📁 WITH FILE UPLOADS:
|
||||
# - Configure all NEXTCLOUD_* settings
|
||||
# - Test connection before enabling in UI
|
||||
|
||||
# 🔄 WITH CONTRIBUTIONS:
|
||||
# - Configure all GIT_* settings
|
||||
# - Test API token permissions for issue creation
|
||||
|
||||
# 🔍 WITH FULL MONITORING:
|
||||
# - Enable FORENSIC_AUDIT_ENABLED=true
|
||||
# - Enable AI_PIPELINE_DEBUG=true
|
||||
# - Configure audit retention and detail level
|
||||
|
||||
# ============================================================================
|
||||
# SETUP CHECKLIST
|
||||
# ============================================================================
|
||||
# ✅ 1. Set PUBLIC_BASE_URL to your domain
|
||||
# ✅ 2. Change AUTH_SECRET to a secure random string
|
||||
# ✅ 3. Configure AI endpoints (Ollama: leave API_KEY empty)
|
||||
# ✅ 4. Start with default AI values, tune based on performance
|
||||
# ✅ 5. Enable authentication if needed (configure OIDC)
|
||||
# ✅ 6. Configure Nextcloud if file uploads needed
|
||||
# ✅ 7. Configure Git provider if contributions needed
|
||||
# ✅ 8. Test with a simple query to verify pipeline works
|
||||
# ✅ 9. Enable audit trail for transparency if desired
|
||||
# ✅ 10. Tune performance settings based on usage patterns
|
||||
# ============================================================================
|
@ -1,4 +1,5 @@
|
||||
// src/pages/api/ai/enhance-input.ts - ENHANCED with forensics methodology
|
||||
// src/pages/api/ai/enhance-input.ts - Enhanced AI service compatibility
|
||||
|
||||
import type { APIRoute } from 'astro';
|
||||
import { withAPIAuth } from '../../../utils/auth.js';
|
||||
import { apiError, apiServerError, createAuthErrorResponse } from '../../../utils/api.js';
|
||||
@ -20,7 +21,7 @@ const AI_ANALYZER_MODEL = getEnv('AI_ANALYZER_MODEL');
|
||||
|
||||
const rateLimitStore = new Map<string, { count: number; resetTime: number }>();
|
||||
const RATE_LIMIT_WINDOW = 60 * 1000; // 1 minute
|
||||
const RATE_LIMIT_MAX = 5;
|
||||
const RATE_LIMIT_MAX = 5;
|
||||
|
||||
function sanitizeInput(input: string): string {
|
||||
return input
|
||||
@ -93,6 +94,45 @@ ${input}
|
||||
`.trim();
|
||||
}
|
||||
|
||||
// Enhanced AI service call function
|
||||
async function callAIService(prompt: string): Promise<Response> {
|
||||
const endpoint = AI_ENDPOINT;
|
||||
const apiKey = AI_ANALYZER_API_KEY;
|
||||
const model = AI_ANALYZER_MODEL;
|
||||
|
||||
// Simple headers - add auth only if API key exists
|
||||
let headers: Record<string, string> = {
|
||||
'Content-Type': 'application/json'
|
||||
};
|
||||
|
||||
// Add authentication if API key is provided
|
||||
if (apiKey) {
|
||||
headers['Authorization'] = `Bearer ${apiKey}`;
|
||||
console.log('[ENHANCE API] Using API key authentication');
|
||||
} else {
|
||||
console.log('[ENHANCE API] No API key - making request without authentication');
|
||||
}
|
||||
|
||||
// Simple request body
|
||||
const requestBody = {
|
||||
model,
|
||||
messages: [{ role: 'user', content: prompt }],
|
||||
max_tokens: 300,
|
||||
temperature: 0.7,
|
||||
top_p: 0.9,
|
||||
frequency_penalty: 0.2,
|
||||
presence_penalty: 0.1
|
||||
};
|
||||
|
||||
// FIXED: This function is already being called through enqueueApiCall in the main handler
|
||||
// So we can use direct fetch here since the queuing happens at the caller level
|
||||
return fetch(`${endpoint}/v1/chat/completions`, {
|
||||
method: 'POST',
|
||||
headers,
|
||||
body: JSON.stringify(requestBody)
|
||||
});
|
||||
}
|
||||
|
||||
export const POST: APIRoute = async ({ request }) => {
|
||||
try {
|
||||
const authResult = await withAPIAuth(request, 'ai');
|
||||
@ -121,31 +161,11 @@ export const POST: APIRoute = async ({ request }) => {
|
||||
const systemPrompt = createEnhancementPrompt(sanitizedInput);
|
||||
const taskId = `enhance_${userId}_${Date.now()}_${Math.random().toString(36).substr(2, 4)}`;
|
||||
|
||||
const aiResponse = await enqueueApiCall(() =>
|
||||
fetch(`${AI_ENDPOINT}/v1/chat/completions`, {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
'Authorization': `Bearer ${AI_ANALYZER_API_KEY}`
|
||||
},
|
||||
body: JSON.stringify({
|
||||
model: AI_ANALYZER_MODEL,
|
||||
messages: [
|
||||
{
|
||||
role: 'user',
|
||||
content: systemPrompt
|
||||
}
|
||||
],
|
||||
max_tokens: 300,
|
||||
temperature: 0.7,
|
||||
top_p: 0.9,
|
||||
frequency_penalty: 0.2,
|
||||
presence_penalty: 0.1
|
||||
})
|
||||
}), taskId);
|
||||
const aiResponse = await enqueueApiCall(() => callAIService(systemPrompt), taskId);
|
||||
|
||||
if (!aiResponse.ok) {
|
||||
console.error('AI enhancement error:', await aiResponse.text());
|
||||
const errorText = await aiResponse.text();
|
||||
console.error('[ENHANCE API] AI enhancement error:', errorText, 'Status:', aiResponse.status);
|
||||
return apiServerError.unavailable('Enhancement service unavailable');
|
||||
}
|
||||
|
||||
@ -188,7 +208,7 @@ export const POST: APIRoute = async ({ request }) => {
|
||||
questions = [];
|
||||
}
|
||||
|
||||
console.log(`[AI Enhancement] User: ${userId}, Forensics Questions: ${questions.length}, Input length: ${sanitizedInput.length}`);
|
||||
console.log(`[ENHANCE API] User: ${userId}, Forensics Questions: ${questions.length}, Input length: ${sanitizedInput.length}`);
|
||||
|
||||
return new Response(JSON.stringify({
|
||||
success: true,
|
||||
|
@ -66,6 +66,11 @@ interface AnalysisContext {
|
||||
auditTrail: AuditEntry[];
|
||||
}
|
||||
|
||||
interface SimilarityResult extends EmbeddingData {
|
||||
similarity: number;
|
||||
}
|
||||
|
||||
|
||||
class ImprovedMicroTaskAIPipeline {
|
||||
private config: AIConfig;
|
||||
private maxSelectedItems: number;
|
||||
@ -267,39 +272,62 @@ class ImprovedMicroTaskAIPipeline {
|
||||
userQuery,
|
||||
this.embeddingCandidates,
|
||||
this.similarityThreshold
|
||||
);
|
||||
) as SimilarityResult[]; // Type assertion for similarity property
|
||||
|
||||
const toolNames = new Set<string>();
|
||||
const conceptNames = new Set<string>();
|
||||
console.log(`[IMPROVED PIPELINE] Embeddings found ${similarItems.length} similar items`);
|
||||
|
||||
similarItems.forEach(item => {
|
||||
if (item.type === 'tool') toolNames.add(item.name);
|
||||
if (item.type === 'concept') conceptNames.add(item.name);
|
||||
});
|
||||
// FIXED: Create lookup maps for O(1) access while preserving original data
|
||||
const toolsMap = new Map<string, any>(toolsData.tools.map((tool: any) => [tool.name, tool]));
|
||||
const conceptsMap = new Map<string, any>(toolsData.concepts.map((concept: any) => [concept.name, concept]));
|
||||
|
||||
console.log(`[IMPROVED PIPELINE] Embeddings found: ${toolNames.size} tools, ${conceptNames.size} concepts`);
|
||||
// FIXED: Process in similarity order, preserving the ranking
|
||||
const similarTools = similarItems
|
||||
.filter((item): item is SimilarityResult => item.type === 'tool')
|
||||
.map(item => toolsMap.get(item.name))
|
||||
.filter((tool): tool is any => tool !== undefined); // Proper type guard
|
||||
|
||||
if (toolNames.size >= 15) {
|
||||
candidateTools = toolsData.tools.filter((tool: any) => toolNames.has(tool.name));
|
||||
candidateConcepts = toolsData.concepts.filter((concept: any) => conceptNames.has(concept.name));
|
||||
const similarConcepts = similarItems
|
||||
.filter((item): item is SimilarityResult => item.type === 'concept')
|
||||
.map(item => conceptsMap.get(item.name))
|
||||
.filter((concept): concept is any => concept !== undefined); // Proper type guard
|
||||
|
||||
console.log(`[IMPROVED PIPELINE] Similarity-ordered results: ${similarTools.length} tools, ${similarConcepts.length} concepts`);
|
||||
|
||||
// Log the first few tools to verify ordering is preserved
|
||||
if (similarTools.length > 0) {
|
||||
console.log(`[IMPROVED PIPELINE] Top similar tools (in similarity order):`);
|
||||
similarTools.slice(0, 5).forEach((tool, idx) => {
|
||||
const originalSimilarItem = similarItems.find(item => item.name === tool.name);
|
||||
console.log(` ${idx + 1}. ${tool.name} (similarity: ${originalSimilarItem?.similarity?.toFixed(4) || 'N/A'})`);
|
||||
});
|
||||
}
|
||||
|
||||
if (similarTools.length >= 15) {
|
||||
candidateTools = similarTools;
|
||||
candidateConcepts = similarConcepts;
|
||||
selectionMethod = 'embeddings_candidates';
|
||||
|
||||
console.log(`[IMPROVED PIPELINE] Using embeddings candidates: ${candidateTools.length} tools`);
|
||||
console.log(`[IMPROVED PIPELINE] Using embeddings candidates in similarity order: ${candidateTools.length} tools`);
|
||||
} else {
|
||||
console.log(`[IMPROVED PIPELINE] Embeddings insufficient (${toolNames.size} < 15), using full dataset`);
|
||||
console.log(`[IMPROVED PIPELINE] Embeddings insufficient (${similarTools.length} < 15), using full dataset`);
|
||||
candidateTools = toolsData.tools;
|
||||
candidateConcepts = toolsData.concepts;
|
||||
selectionMethod = 'full_dataset';
|
||||
}
|
||||
|
||||
// NEW: Add Audit Entry for Embeddings Search
|
||||
// NEW: Add Audit Entry for Embeddings Search with ordering verification
|
||||
if (this.auditConfig.enabled) {
|
||||
this.addAuditEntry(null, 'retrieval', 'embeddings-search',
|
||||
{ query: userQuery, threshold: this.similarityThreshold, candidates: this.embeddingCandidates },
|
||||
{ candidatesFound: similarItems.length, toolNames: Array.from(toolNames), conceptNames: Array.from(conceptNames) },
|
||||
similarItems.length >= 15 ? 85 : 60, // Confidence based on result quality
|
||||
{
|
||||
candidatesFound: similarItems.length,
|
||||
toolsInOrder: similarTools.slice(0, 3).map((t: any) => t.name),
|
||||
conceptsInOrder: similarConcepts.slice(0, 3).map((c: any) => c.name),
|
||||
orderingPreserved: true
|
||||
},
|
||||
similarTools.length >= 15 ? 85 : 60,
|
||||
embeddingsStart,
|
||||
{ selectionMethod, embeddingsEnabled: true }
|
||||
{ selectionMethod, embeddingsEnabled: true, orderingFixed: true }
|
||||
);
|
||||
}
|
||||
} else {
|
||||
@ -309,7 +337,7 @@ class ImprovedMicroTaskAIPipeline {
|
||||
selectionMethod = 'full_dataset';
|
||||
}
|
||||
|
||||
console.log(`[IMPROVED PIPELINE] AI will analyze FULL DATA of ${candidateTools.length} candidate tools`);
|
||||
console.log(`[IMPROVED PIPELINE] AI will analyze ${candidateTools.length} candidate tools (ordering preserved: ${selectionMethod === 'embeddings_candidates'})`);
|
||||
const finalSelection = await this.aiSelectionWithFullData(userQuery, candidateTools, candidateConcepts, mode, selectionMethod);
|
||||
|
||||
return {
|
||||
@ -735,33 +763,59 @@ ${JSON.stringify(conceptsWithFullData.slice(0, 10), null, 2)}`;
|
||||
}
|
||||
|
||||
private async callAI(prompt: string, maxTokens: number = 1000): Promise<string> {
|
||||
const response = await fetch(`${this.config.endpoint}/v1/chat/completions`, {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
'Authorization': `Bearer ${this.config.apiKey}`
|
||||
},
|
||||
body: JSON.stringify({
|
||||
model: this.config.model,
|
||||
messages: [{ role: 'user', content: prompt }],
|
||||
max_tokens: maxTokens,
|
||||
temperature: 0.3
|
||||
})
|
||||
});
|
||||
|
||||
if (!response.ok) {
|
||||
const errorText = await response.text();
|
||||
throw new Error(`AI API error: ${response.status} - ${errorText}`);
|
||||
}
|
||||
|
||||
const data = await response.json();
|
||||
const content = data.choices?.[0]?.message?.content;
|
||||
const endpoint = this.config.endpoint;
|
||||
const apiKey = this.config.apiKey;
|
||||
const model = this.config.model;
|
||||
|
||||
if (!content) {
|
||||
throw new Error('No response from AI model');
|
||||
// Simple headers - add auth only if API key exists
|
||||
let headers: Record<string, string> = {
|
||||
'Content-Type': 'application/json'
|
||||
};
|
||||
|
||||
// Add authentication if API key is provided
|
||||
if (apiKey) {
|
||||
headers['Authorization'] = `Bearer ${apiKey}`;
|
||||
console.log('[AI PIPELINE] Using API key authentication');
|
||||
} else {
|
||||
console.log('[AI PIPELINE] No API key - making request without authentication');
|
||||
}
|
||||
|
||||
// Simple request body
|
||||
const requestBody = {
|
||||
model,
|
||||
messages: [{ role: 'user', content: prompt }],
|
||||
max_tokens: maxTokens,
|
||||
temperature: 0.3
|
||||
};
|
||||
|
||||
try {
|
||||
// FIXED: Use direct fetch since entire pipeline is already queued at query.ts level
|
||||
const response = await fetch(`${endpoint}/v1/chat/completions`, {
|
||||
method: 'POST',
|
||||
headers,
|
||||
body: JSON.stringify(requestBody)
|
||||
});
|
||||
|
||||
return content;
|
||||
if (!response.ok) {
|
||||
const errorText = await response.text();
|
||||
console.error(`[AI PIPELINE] AI API Error ${response.status}:`, errorText);
|
||||
throw new Error(`AI API error: ${response.status} - ${errorText}`);
|
||||
}
|
||||
|
||||
const data = await response.json();
|
||||
const content = data.choices?.[0]?.message?.content;
|
||||
|
||||
if (!content) {
|
||||
console.error('[AI PIPELINE] No response content:', data);
|
||||
throw new Error('No response from AI model');
|
||||
}
|
||||
|
||||
return content;
|
||||
|
||||
} catch (error) {
|
||||
console.error('[AI PIPELINE] AI service call failed:', error.message);
|
||||
throw error;
|
||||
}
|
||||
}
|
||||
|
||||
async processQuery(userQuery: string, mode: string): Promise<AnalysisResult> {
|
||||
|
@ -24,6 +24,10 @@ interface EmbeddingsDatabase {
|
||||
embeddings: EmbeddingData[];
|
||||
}
|
||||
|
||||
interface SimilarityResult extends EmbeddingData {
|
||||
similarity: number;
|
||||
}
|
||||
|
||||
class EmbeddingsService {
|
||||
private embeddings: EmbeddingData[] = [];
|
||||
private isInitialized = false;
|
||||
@ -211,8 +215,9 @@ class EmbeddingsService {
|
||||
return dotProduct / (Math.sqrt(normA) * Math.sqrt(normB));
|
||||
}
|
||||
|
||||
async findSimilar(query: string, maxResults: number = 30, threshold: number = 0.3): Promise<EmbeddingData[]> {
|
||||
async findSimilar(query: string, maxResults: number = 30, threshold: number = 0.3): Promise<SimilarityResult[]> {
|
||||
if (!this.enabled || !this.isInitialized || this.embeddings.length === 0) {
|
||||
console.log('[EMBEDDINGS] Service not available for similarity search');
|
||||
return [];
|
||||
}
|
||||
|
||||
@ -221,18 +226,51 @@ class EmbeddingsService {
|
||||
const queryEmbeddings = await this.generateEmbeddingsBatch([query.toLowerCase()]);
|
||||
const queryEmbedding = queryEmbeddings[0];
|
||||
|
||||
// Calculate similarities
|
||||
const similarities = this.embeddings.map(item => ({
|
||||
console.log(`[EMBEDDINGS] Computing similarities for ${this.embeddings.length} items`);
|
||||
|
||||
// Calculate similarities - properly typed
|
||||
const similarities: SimilarityResult[] = this.embeddings.map(item => ({
|
||||
...item,
|
||||
similarity: this.cosineSimilarity(queryEmbedding, item.embedding)
|
||||
}));
|
||||
|
||||
// Filter by threshold and sort by similarity
|
||||
return similarities
|
||||
// Filter by threshold and sort by similarity (descending - highest first)
|
||||
const results = similarities
|
||||
.filter(item => item.similarity >= threshold)
|
||||
.sort((a, b) => b.similarity - a.similarity)
|
||||
.sort((a, b) => b.similarity - a.similarity) // CRITICAL: Ensure descending order
|
||||
.slice(0, maxResults);
|
||||
|
||||
// ENHANCED: Verify ordering is correct
|
||||
const orderingValid = results.every((item, index) => {
|
||||
if (index === 0) return true;
|
||||
return item.similarity <= results[index - 1].similarity;
|
||||
});
|
||||
|
||||
if (!orderingValid) {
|
||||
console.error('[EMBEDDINGS] CRITICAL: Similarity ordering is broken!');
|
||||
results.forEach((item, idx) => {
|
||||
console.error(` ${idx}: ${item.name} = ${item.similarity.toFixed(4)}`);
|
||||
});
|
||||
}
|
||||
|
||||
// ENHANCED: Log top results for debugging
|
||||
console.log(`[EMBEDDINGS] Found ${results.length} similar items (threshold: ${threshold})`);
|
||||
if (results.length > 0) {
|
||||
console.log('[EMBEDDINGS] Top 5 similarity matches:');
|
||||
results.slice(0, 5).forEach((item, idx) => {
|
||||
console.log(` ${idx + 1}. ${item.name} (${item.type}) = ${item.similarity.toFixed(4)}`);
|
||||
});
|
||||
|
||||
// Verify first result is indeed the highest
|
||||
const topSimilarity = results[0].similarity;
|
||||
const hasHigherSimilarity = results.some(item => item.similarity > topSimilarity);
|
||||
if (hasHigherSimilarity) {
|
||||
console.error('[EMBEDDINGS] CRITICAL: Top result is not actually the highest similarity!');
|
||||
}
|
||||
}
|
||||
|
||||
return results;
|
||||
|
||||
} catch (error) {
|
||||
console.error('[EMBEDDINGS] Failed to find similar items:', error);
|
||||
return [];
|
||||
@ -257,7 +295,7 @@ class EmbeddingsService {
|
||||
// Global instance
|
||||
const embeddingsService = new EmbeddingsService();
|
||||
|
||||
export { embeddingsService, type EmbeddingData };
|
||||
export { embeddingsService, type EmbeddingData, type SimilarityResult };
|
||||
|
||||
// Auto-initialize on import in server environment
|
||||
if (typeof window === 'undefined' && process.env.NODE_ENV !== 'test') {
|
||||
|
Loading…
x
Reference in New Issue
Block a user