forensic-ai #4
38
.env.example
38
.env.example
@ -54,6 +54,11 @@ AI_SIMILARITY_THRESHOLD=0.3
|
||||
AI_EMBEDDING_SELECTION_LIMIT=30
|
||||
AI_EMBEDDING_CONCEPTS_LIMIT=15
|
||||
|
||||
# Maximum tools/concepts sent to AI when embeddings are DISABLED
|
||||
# Set to 0 for no limit (WARNING: may cause token overflow with large datasets)
|
||||
AI_NO_EMBEDDINGS_TOOL_LIMIT=0
|
||||
AI_NO_EMBEDDINGS_CONCEPT_LIMIT=0
|
||||
|
||||
# === AI SELECTION STAGE ===
|
||||
# Maximum tools the AI can select from embedding candidates
|
||||
# 🤖 This is the SECOND filter - AI intelligent selection
|
||||
@ -98,17 +103,21 @@ AI_EMBEDDINGS_BATCH_SIZE=10
|
||||
# Delay between embedding batches (milliseconds)
|
||||
AI_EMBEDDINGS_BATCH_DELAY_MS=1000
|
||||
|
||||
# Maximum tools sent to AI for detailed analysis (micro-tasks)
|
||||
AI_MAX_TOOLS_TO_ANALYZE=20
|
||||
AI_MAX_CONCEPTS_TO_ANALYZE=10
|
||||
|
||||
# ============================================================================
|
||||
# 5. AI CONTEXT & TOKEN MANAGEMENT
|
||||
# ============================================================================
|
||||
|
||||
# Maximum context tokens to maintain across micro-tasks
|
||||
# Controls how much conversation history is preserved between AI calls
|
||||
AI_MAX_CONTEXT_TOKENS=3000
|
||||
AI_MAX_CONTEXT_TOKENS=4000
|
||||
|
||||
# Maximum tokens per individual AI prompt
|
||||
# Larger = more context per call | Smaller = faster responses
|
||||
AI_MAX_PROMPT_TOKENS=1200
|
||||
AI_MAX_PROMPT_TOKENS=1500
|
||||
|
||||
# ============================================================================
|
||||
# 6. AUTHENTICATION & AUTHORIZATION (OPTIONAL)
|
||||
@ -169,7 +178,7 @@ GIT_API_TOKEN=your-git-api-token
|
||||
# ============================================================================
|
||||
|
||||
# Enable detailed audit trail of AI decision-making
|
||||
FORENSIC_AUDIT_ENABLED=false
|
||||
FORENSIC_AUDIT_ENABLED=true
|
||||
|
||||
# Audit detail level: minimal, standard, verbose
|
||||
FORENSIC_AUDIT_DETAIL_LEVEL=standard
|
||||
@ -199,23 +208,16 @@ CONFIDENCE_HIGH_THRESHOLD=80
|
||||
# PERFORMANCE TUNING PRESETS
|
||||
# ============================================================================
|
||||
|
||||
# 🚀 FOR FASTER RESPONSES (less comprehensive):
|
||||
# AI_EMBEDDING_CANDIDATES=20
|
||||
# AI_MAX_SELECTED_ITEMS=15
|
||||
# AI_MICRO_TASK_DELAY_MS=200
|
||||
# AI_MAX_CONTEXT_TOKENS=2000
|
||||
# 🚀 FOR FASTER RESPONSES (prevent token overflow):
|
||||
# AI_NO_EMBEDDINGS_TOOL_LIMIT=25
|
||||
# AI_NO_EMBEDDINGS_CONCEPT_LIMIT=10
|
||||
|
||||
# 🎯 FOR BETTER QUALITY (more comprehensive):
|
||||
# AI_EMBEDDING_CANDIDATES=60
|
||||
# AI_MAX_SELECTED_ITEMS=40
|
||||
# AI_MICRO_TASK_DELAY_MS=800
|
||||
# AI_MAX_CONTEXT_TOKENS=4000
|
||||
# 🎯 FOR FULL DATABASE ACCESS (risk of truncation):
|
||||
# AI_NO_EMBEDDINGS_TOOL_LIMIT=0
|
||||
# AI_NO_EMBEDDINGS_CONCEPT_LIMIT=0
|
||||
|
||||
# 🔋 FOR LOW-POWER SYSTEMS (minimal resources):
|
||||
# AI_EMBEDDING_CANDIDATES=15
|
||||
# AI_MAX_SELECTED_ITEMS=10
|
||||
# AI_RATE_LIMIT_MAX_REQUESTS=2
|
||||
# AI_MICRO_TASK_DELAY_MS=1000
|
||||
# 🔋 FOR LOW-POWER SYSTEMS:
|
||||
# AI_NO_EMBEDDINGS_TOOL_LIMIT=15
|
||||
|
||||
# ============================================================================
|
||||
# FEATURE COMBINATIONS GUIDE
|
||||
|
@ -113,64 +113,6 @@ tools:
|
||||
accessType: download
|
||||
license: VSL
|
||||
knowledgebase: false
|
||||
- name: TheHive 5
|
||||
icon: 🐝
|
||||
type: software
|
||||
description: >-
|
||||
Die zentrale Incident-Response-Plattform orchestriert komplexe
|
||||
Sicherheitsvorfälle vom ersten Alert bis zum Abschlussbericht. Jeder Case
|
||||
wird strukturiert durch Observables (IOCs), Tasks und Zeitleisten
|
||||
abgebildet. Die Cortex-Integration automatisiert Analysen durch Dutzende
|
||||
Analyzer - von VirusTotal-Checks bis Sandbox-Detonation.
|
||||
MISP-Synchronisation reichert Cases mit Threat-Intelligence an. Das
|
||||
ausgeklügelte Rollen- und Rechtesystem ermöglicht sichere Zusammenarbeit
|
||||
zwischen SOC-Analysten, Forensikern und Management. Templates
|
||||
standardisieren Response-Prozesse nach Incident-Typ. Die RESTful API
|
||||
integriert nahtlos mit SIEM, SOAR und Ticketing-Systemen. Metrics und
|
||||
KPIs messen die Team-Performance. Die Community Edition bleibt kostenlos
|
||||
für kleinere Teams, während Gold/Platinum-Lizenzen Enterprise-Features
|
||||
bieten.
|
||||
domains:
|
||||
- incident-response
|
||||
- static-investigations
|
||||
- malware-analysis
|
||||
- network-forensics
|
||||
- fraud-investigation
|
||||
phases:
|
||||
- data-collection
|
||||
- examination
|
||||
- analysis
|
||||
- reporting
|
||||
platforms:
|
||||
- Web
|
||||
related_software:
|
||||
- MISP
|
||||
- Cortex
|
||||
- Elasticsearch
|
||||
domain-agnostic-software:
|
||||
- collaboration-general
|
||||
skillLevel: intermediate
|
||||
accessType: server-based
|
||||
url: https://strangebee.com/thehive/
|
||||
projectUrl: ''
|
||||
license: Community Edition (Discontinued) / Commercial
|
||||
knowledgebase: false
|
||||
statusUrl: https://uptime.example.lab/api/badge/1/status
|
||||
tags:
|
||||
- web-interface
|
||||
- case-management
|
||||
- collaboration
|
||||
- api
|
||||
- workflow
|
||||
- multi-user-support
|
||||
- cortex-analyzer
|
||||
- misp-integration
|
||||
- playbooks
|
||||
- metrics
|
||||
- rbac
|
||||
- template-driven
|
||||
related_concepts:
|
||||
- Digital Evidence Chain of Custody
|
||||
- name: MISP
|
||||
icon: 🌐
|
||||
type: software
|
||||
@ -223,7 +165,6 @@ tools:
|
||||
related_concepts:
|
||||
- Hash Functions & Digital Signatures
|
||||
related_software:
|
||||
- TheHive 5
|
||||
- Cortex
|
||||
- OpenCTI
|
||||
- name: DFIR-IRIS
|
||||
@ -260,7 +201,6 @@ tools:
|
||||
platforms:
|
||||
- Web
|
||||
related_software:
|
||||
- TheHive 5
|
||||
- MISP
|
||||
- OpenCTI
|
||||
domain-agnostic-software:
|
||||
|
@ -94,18 +94,15 @@ ${input}
|
||||
`.trim();
|
||||
}
|
||||
|
||||
// Enhanced AI service call function
|
||||
async function callAIService(prompt: string): Promise<Response> {
|
||||
const endpoint = AI_ENDPOINT;
|
||||
const apiKey = AI_ANALYZER_API_KEY;
|
||||
const model = AI_ANALYZER_MODEL;
|
||||
|
||||
// Simple headers - add auth only if API key exists
|
||||
let headers: Record<string, string> = {
|
||||
'Content-Type': 'application/json'
|
||||
};
|
||||
|
||||
// Add authentication if API key is provided
|
||||
if (apiKey) {
|
||||
headers['Authorization'] = `Bearer ${apiKey}`;
|
||||
console.log('[ENHANCE API] Using API key authentication');
|
||||
@ -113,7 +110,6 @@ async function callAIService(prompt: string): Promise<Response> {
|
||||
console.log('[ENHANCE API] No API key - making request without authentication');
|
||||
}
|
||||
|
||||
// Simple request body
|
||||
const requestBody = {
|
||||
model,
|
||||
messages: [{ role: 'user', content: prompt }],
|
||||
@ -124,8 +120,6 @@ async function callAIService(prompt: string): Promise<Response> {
|
||||
presence_penalty: 0.1
|
||||
};
|
||||
|
||||
// FIXED: This function is already being called through enqueueApiCall in the main handler
|
||||
// So we can use direct fetch here since the queuing happens at the caller level
|
||||
return fetch(`${endpoint}/v1/chat/completions`, {
|
||||
method: 'POST',
|
||||
headers,
|
||||
@ -214,7 +208,7 @@ export const POST: APIRoute = async ({ request }) => {
|
||||
success: true,
|
||||
questions,
|
||||
taskId,
|
||||
inputComplete: questions.length === 0 // Flag to indicate if input seems complete
|
||||
inputComplete: questions.length === 0
|
||||
}), {
|
||||
status: 200,
|
||||
headers: { 'Content-Type': 'application/json' }
|
||||
|
@ -31,7 +31,6 @@ interface AnalysisResult {
|
||||
};
|
||||
}
|
||||
|
||||
// NEW: Audit Trail Types
|
||||
interface AuditEntry {
|
||||
timestamp: number;
|
||||
phase: string; // 'retrieval', 'selection', 'micro-task-N'
|
||||
@ -40,10 +39,9 @@ interface AuditEntry {
|
||||
output: any; // What came out of this step
|
||||
confidence: number; // 0-100: How confident we are in this step
|
||||
processingTimeMs: number;
|
||||
metadata: Record<string, any>; // Additional context
|
||||
metadata: Record<string, any>;
|
||||
}
|
||||
|
||||
// Enhanced AnalysisContext with Audit Trail
|
||||
interface AnalysisContext {
|
||||
userQuery: string;
|
||||
mode: string;
|
||||
@ -62,7 +60,6 @@ interface AnalysisContext {
|
||||
|
||||
seenToolNames: Set<string>;
|
||||
|
||||
// NEW: Audit Trail
|
||||
auditTrail: AuditEntry[];
|
||||
}
|
||||
|
||||
@ -78,25 +75,24 @@ class ImprovedMicroTaskAIPipeline {
|
||||
private similarityThreshold: number;
|
||||
private microTaskDelay: number;
|
||||
|
||||
// NEW: Embedding selection limits (top N from pre-filtered candidates)
|
||||
private embeddingSelectionLimit: number;
|
||||
private embeddingConceptsLimit: number;
|
||||
|
||||
// NEW: Embeddings efficiency thresholds
|
||||
private noEmbeddingsToolLimit: number;
|
||||
private noEmbeddingsConceptLimit: number;
|
||||
|
||||
private embeddingsMinTools: number;
|
||||
private embeddingsMaxReductionRatio: number;
|
||||
|
||||
private maxContextTokens: number;
|
||||
private maxPromptTokens: number;
|
||||
|
||||
// Audit Configuration
|
||||
private auditConfig: {
|
||||
enabled: boolean;
|
||||
detailLevel: 'minimal' | 'standard' | 'verbose';
|
||||
retentionHours: number;
|
||||
};
|
||||
|
||||
// Temporary audit storage for pre-context operations
|
||||
private tempAuditEntries: AuditEntry[] = [];
|
||||
|
||||
constructor() {
|
||||
@ -106,36 +102,33 @@ class ImprovedMicroTaskAIPipeline {
|
||||
model: this.getEnv('AI_ANALYZER_MODEL')
|
||||
};
|
||||
|
||||
// Core pipeline configuration
|
||||
this.maxSelectedItems = parseInt(process.env.AI_MAX_SELECTED_ITEMS || '25', 10);
|
||||
this.embeddingCandidates = parseInt(process.env.AI_EMBEDDING_CANDIDATES || '50', 10);
|
||||
this.similarityThreshold = parseFloat(process.env.AI_SIMILARITY_THRESHOLD || '0.3');
|
||||
this.microTaskDelay = parseInt(process.env.AI_MICRO_TASK_DELAY_MS || '500', 10);
|
||||
|
||||
// NEW: Embedding selection limits (top N from pre-filtered candidates)
|
||||
this.embeddingSelectionLimit = parseInt(process.env.AI_EMBEDDING_SELECTION_LIMIT || '30', 10);
|
||||
this.embeddingConceptsLimit = parseInt(process.env.AI_EMBEDDING_CONCEPTS_LIMIT || '15', 10);
|
||||
|
||||
// NEW: Embeddings efficiency thresholds
|
||||
this.noEmbeddingsToolLimit = parseInt(process.env.AI_NO_EMBEDDINGS_TOOL_LIMIT || '0', 10);
|
||||
this.noEmbeddingsConceptLimit = parseInt(process.env.AI_NO_EMBEDDINGS_CONCEPT_LIMIT || '0', 10);
|
||||
|
||||
this.embeddingsMinTools = parseInt(process.env.AI_EMBEDDINGS_MIN_TOOLS || '8', 10);
|
||||
this.embeddingsMaxReductionRatio = parseFloat(process.env.AI_EMBEDDINGS_MAX_REDUCTION_RATIO || '0.75');
|
||||
|
||||
// Context management
|
||||
this.maxContextTokens = parseInt(process.env.AI_MAX_CONTEXT_TOKENS || '4000', 10);
|
||||
this.maxPromptTokens = parseInt(process.env.AI_MAX_PROMPT_TOKENS || '1500', 10);
|
||||
|
||||
// Audit configuration
|
||||
this.auditConfig = {
|
||||
enabled: process.env.FORENSIC_AUDIT_ENABLED === 'true',
|
||||
detailLevel: (process.env.FORENSIC_AUDIT_DETAIL_LEVEL as any) || 'standard',
|
||||
retentionHours: parseInt(process.env.FORENSIC_AUDIT_RETENTION_HOURS || '72', 10)
|
||||
};
|
||||
|
||||
// Log configuration for debugging
|
||||
console.log('[AI PIPELINE] Configuration loaded:', {
|
||||
embeddingCandidates: this.embeddingCandidates,
|
||||
embeddingSelection: `${this.embeddingSelectionLimit} tools, ${this.embeddingConceptsLimit} concepts`,
|
||||
embeddingsThresholds: `min ${this.embeddingsMinTools} tools, max ${this.embeddingsMaxReductionRatio * 100}% of total`,
|
||||
noEmbeddingsLimits: `${this.noEmbeddingsToolLimit || 'unlimited'} tools, ${this.noEmbeddingsConceptLimit || 'unlimited'} concepts`,
|
||||
auditEnabled: this.auditConfig.enabled
|
||||
});
|
||||
}
|
||||
@ -148,7 +141,6 @@ class ImprovedMicroTaskAIPipeline {
|
||||
return value;
|
||||
}
|
||||
|
||||
// NEW: Audit Trail Utility Functions
|
||||
private addAuditEntry(
|
||||
context: AnalysisContext | null,
|
||||
phase: string,
|
||||
@ -175,22 +167,18 @@ class ImprovedMicroTaskAIPipeline {
|
||||
if (context) {
|
||||
context.auditTrail.push(auditEntry);
|
||||
} else {
|
||||
// Store in temporary array for later merging
|
||||
this.tempAuditEntries.push(auditEntry);
|
||||
}
|
||||
|
||||
// Log for debugging when audit is enabled
|
||||
console.log(`[AUDIT] ${phase}/${action}: ${confidence}% confidence, ${Date.now() - startTime}ms`);
|
||||
}
|
||||
|
||||
// NEW: Merge temporary audit entries into context
|
||||
private mergeTemporaryAuditEntries(context: AnalysisContext): void {
|
||||
if (!this.auditConfig.enabled || this.tempAuditEntries.length === 0) return;
|
||||
|
||||
const entryCount = this.tempAuditEntries.length;
|
||||
// Add temp entries to the beginning of the context audit trail
|
||||
context.auditTrail.unshift(...this.tempAuditEntries);
|
||||
this.tempAuditEntries = []; // Clear temp storage
|
||||
this.tempAuditEntries = [];
|
||||
|
||||
console.log(`[AUDIT] Merged ${entryCount} temporary audit entries into context`);
|
||||
}
|
||||
@ -222,15 +210,12 @@ class ImprovedMicroTaskAIPipeline {
|
||||
|
||||
let confidence = 60; // Base confidence
|
||||
|
||||
// Good selection ratio (not too many, not too few)
|
||||
if (selectionRatio > 0.05 && selectionRatio < 0.3) confidence += 20;
|
||||
else if (selectionRatio <= 0.05) confidence -= 10; // Too few
|
||||
else confidence -= 15; // Too many
|
||||
|
||||
// Has detailed reasoning
|
||||
if (hasReasoning) confidence += 15;
|
||||
|
||||
// Selected tools have good distribution
|
||||
if (result.selectedConcepts && result.selectedConcepts.length > 0) confidence += 5;
|
||||
|
||||
return Math.min(95, Math.max(25, confidence));
|
||||
@ -254,26 +239,106 @@ class ImprovedMicroTaskAIPipeline {
|
||||
|
||||
private safeParseJSON(jsonString: string, fallback: any = null): any {
|
||||
try {
|
||||
const cleaned = jsonString
|
||||
let cleaned = jsonString
|
||||
.replace(/^```json\s*/i, '')
|
||||
.replace(/\s*```\s*$/g, '')
|
||||
.trim();
|
||||
|
||||
if (!cleaned.endsWith('}') && !cleaned.endsWith(']')) {
|
||||
console.warn('[AI PIPELINE] JSON appears truncated, attempting recovery...');
|
||||
|
||||
let lastCompleteStructure = '';
|
||||
let braceCount = 0;
|
||||
let bracketCount = 0;
|
||||
let inString = false;
|
||||
let escaped = false;
|
||||
|
||||
for (let i = 0; i < cleaned.length; i++) {
|
||||
const char = cleaned[i];
|
||||
|
||||
if (escaped) {
|
||||
escaped = false;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (char === '\\') {
|
||||
escaped = true;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (char === '"' && !escaped) {
|
||||
inString = !inString;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (!inString) {
|
||||
if (char === '{') braceCount++;
|
||||
if (char === '}') braceCount--;
|
||||
if (char === '[') bracketCount++;
|
||||
if (char === ']') bracketCount--;
|
||||
|
||||
if (braceCount === 0 && bracketCount === 0 && (char === '}' || char === ']')) {
|
||||
lastCompleteStructure = cleaned.substring(0, i + 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (lastCompleteStructure) {
|
||||
console.log('[AI PIPELINE] Attempting to parse recovered JSON structure...');
|
||||
cleaned = lastCompleteStructure;
|
||||
} else {
|
||||
if (braceCount > 0) {
|
||||
cleaned += '}';
|
||||
console.log('[AI PIPELINE] Added closing brace to truncated JSON');
|
||||
}
|
||||
if (bracketCount > 0) {
|
||||
cleaned += ']';
|
||||
console.log('[AI PIPELINE] Added closing bracket to truncated JSON');
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const parsed = JSON.parse(cleaned);
|
||||
|
||||
if (parsed && typeof parsed === 'object') {
|
||||
if (parsed.selectedTools === undefined) parsed.selectedTools = [];
|
||||
if (parsed.selectedConcepts === undefined) parsed.selectedConcepts = [];
|
||||
|
||||
if (!Array.isArray(parsed.selectedTools)) parsed.selectedTools = [];
|
||||
if (!Array.isArray(parsed.selectedConcepts)) parsed.selectedConcepts = [];
|
||||
}
|
||||
|
||||
return parsed;
|
||||
} catch (error) {
|
||||
console.warn('[AI PIPELINE] JSON parsing failed:', error.message);
|
||||
console.warn('[AI PIPELINE] Raw content:', jsonString.slice(0, 200));
|
||||
console.warn('[AI PIPELINE] Raw content (first 300 chars):', jsonString.slice(0, 300));
|
||||
console.warn('[AI PIPELINE] Raw content (last 300 chars):', jsonString.slice(-300));
|
||||
|
||||
if (jsonString.includes('selectedTools')) {
|
||||
const toolMatches = jsonString.match(/"([^"]+)"/g);
|
||||
if (toolMatches && toolMatches.length > 0) {
|
||||
console.log('[AI PIPELINE] Attempting partial recovery from broken JSON...');
|
||||
const possibleTools = toolMatches
|
||||
.map(match => match.replace(/"/g, ''))
|
||||
.filter(name => name.length > 2 && !['selectedTools', 'selectedConcepts', 'reasoning'].includes(name))
|
||||
.slice(0, 15); // Reasonable limit
|
||||
|
||||
if (possibleTools.length > 0) {
|
||||
console.log(`[AI PIPELINE] Recovered ${possibleTools.length} possible tool names from broken JSON`);
|
||||
return {
|
||||
selectedTools: possibleTools,
|
||||
selectedConcepts: [],
|
||||
reasoning: 'Recovered from truncated response'
|
||||
};
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return fallback;
|
||||
}
|
||||
}
|
||||
|
||||
private addToolToSelection(context: AnalysisContext, tool: any, phase: string, priority: string, justification?: string): boolean {
|
||||
if (context.seenToolNames.has(tool.name)) {
|
||||
console.log(`[AI PIPELINE] Skipping duplicate tool: ${tool.name}`);
|
||||
return false;
|
||||
}
|
||||
|
||||
context.seenToolNames.add(tool.name);
|
||||
if (!context.selectedTools) context.selectedTools = [];
|
||||
|
||||
@ -302,11 +367,9 @@ class ImprovedMicroTaskAIPipeline {
|
||||
|
||||
console.log(`[AI PIPELINE] Embeddings found ${similarItems.length} similar items`);
|
||||
|
||||
// Create lookup maps for O(1) access while preserving original data
|
||||
const toolsMap = new Map<string, any>(toolsData.tools.map((tool: any) => [tool.name, tool]));
|
||||
const conceptsMap = new Map<string, any>(toolsData.concepts.map((concept: any) => [concept.name, concept]));
|
||||
|
||||
// Process in similarity order, preserving the ranking
|
||||
const similarTools = similarItems
|
||||
.filter((item): item is SimilarityResult => item.type === 'tool')
|
||||
.map(item => toolsMap.get(item.name))
|
||||
@ -319,7 +382,6 @@ class ImprovedMicroTaskAIPipeline {
|
||||
|
||||
console.log(`[AI PIPELINE] Similarity-ordered results: ${similarTools.length} tools, ${similarConcepts.length} concepts`);
|
||||
|
||||
// FIXED: Better threshold logic - only use embeddings if we get meaningful filtering
|
||||
const totalAvailableTools = toolsData.tools.length;
|
||||
const reductionRatio = similarTools.length / totalAvailableTools;
|
||||
|
||||
@ -340,7 +402,6 @@ class ImprovedMicroTaskAIPipeline {
|
||||
selectionMethod = 'full_dataset';
|
||||
}
|
||||
|
||||
// Enhanced audit entry with reduction statistics
|
||||
if (this.auditConfig.enabled) {
|
||||
this.addAuditEntry(null, 'retrieval', 'embeddings-search',
|
||||
{ query: userQuery, threshold: this.similarityThreshold, candidates: this.embeddingCandidates },
|
||||
@ -420,25 +481,29 @@ class ImprovedMicroTaskAIPipeline {
|
||||
related_software: concept.related_software || []
|
||||
}));
|
||||
|
||||
// CORRECTED LOGIC:
|
||||
let toolsToSend: any[];
|
||||
let conceptsToSend: any[];
|
||||
|
||||
if (selectionMethod === 'embeddings_candidates') {
|
||||
// WITH EMBEDDINGS: Take top N from pre-filtered candidates
|
||||
toolsToSend = toolsWithFullData.slice(0, this.embeddingSelectionLimit);
|
||||
conceptsToSend = conceptsWithFullData.slice(0, this.embeddingConceptsLimit);
|
||||
|
||||
console.log(`[AI PIPELINE] Embeddings enabled: sending top ${toolsToSend.length} pre-filtered tools`);
|
||||
console.log(`[AI PIPELINE] Embeddings enabled: sending top ${toolsToSend.length} similarity-ordered tools`);
|
||||
} else {
|
||||
// WITHOUT EMBEDDINGS: Send entire compressed database (original behavior)
|
||||
toolsToSend = toolsWithFullData; // ALL tools from database
|
||||
conceptsToSend = conceptsWithFullData; // ALL concepts from database
|
||||
const maxTools = this.noEmbeddingsToolLimit > 0 ?
|
||||
Math.min(this.noEmbeddingsToolLimit, candidateTools.length) :
|
||||
candidateTools.length;
|
||||
|
||||
console.log(`[AI PIPELINE] Embeddings disabled: sending entire database (${toolsToSend.length} tools, ${conceptsToSend.length} concepts)`);
|
||||
const maxConcepts = this.noEmbeddingsConceptLimit > 0 ?
|
||||
Math.min(this.noEmbeddingsConceptLimit, candidateConcepts.length) :
|
||||
candidateConcepts.length;
|
||||
|
||||
toolsToSend = toolsWithFullData.slice(0, maxTools);
|
||||
conceptsToSend = conceptsWithFullData.slice(0, maxConcepts);
|
||||
|
||||
console.log(`[AI PIPELINE] Embeddings disabled: sending ${toolsToSend.length}/${candidateTools.length} tools (limit: ${this.noEmbeddingsToolLimit || 'none'})`);
|
||||
}
|
||||
|
||||
// Generate the German prompt with appropriately selected tool data
|
||||
const basePrompt = getPrompt('toolSelection', mode, userQuery, selectionMethod, this.maxSelectedItems);
|
||||
const prompt = `${basePrompt}
|
||||
|
||||
@ -448,9 +513,12 @@ ${JSON.stringify(toolsToSend, null, 2)}
|
||||
VERFÜGBARE KONZEPTE (mit vollständigen Daten):
|
||||
${JSON.stringify(conceptsToSend, null, 2)}`;
|
||||
|
||||
// Log token usage for monitoring
|
||||
const estimatedTokens = this.estimateTokens(prompt);
|
||||
console.log(`[AI PIPELINE] Method: ${selectionMethod}, Tools: ${toolsToSend.length}, Tokens: ~${estimatedTokens}`);
|
||||
console.log(`[AI PIPELINE] Method: ${selectionMethod}, Tools: ${toolsToSend.length}, Estimated tokens: ~${estimatedTokens}`);
|
||||
|
||||
if (estimatedTokens > 35000) {
|
||||
console.warn(`[AI PIPELINE] WARNING: Prompt tokens (${estimatedTokens}) may exceed model limits`);
|
||||
}
|
||||
|
||||
try {
|
||||
const response = await this.callAI(prompt, 2500);
|
||||
@ -527,7 +595,7 @@ ${JSON.stringify(conceptsToSend, null, 2)}`;
|
||||
return new Promise(resolve => setTimeout(resolve, ms));
|
||||
}
|
||||
|
||||
private async callMicroTaskAI(prompt: string, context: AnalysisContext, maxTokens: number = 300): Promise<MicroTaskResult> {
|
||||
private async callMicroTaskAI(prompt: string, context: AnalysisContext, maxTokens: number = 500): Promise<MicroTaskResult> {
|
||||
const startTime = Date.now();
|
||||
|
||||
let contextPrompt = prompt;
|
||||
@ -552,11 +620,10 @@ ${JSON.stringify(conceptsToSend, null, 2)}`;
|
||||
success: true
|
||||
};
|
||||
|
||||
// NEW: Add Audit Entry for Successful Micro-Task
|
||||
this.addAuditEntry(context, 'micro-task', 'ai-analysis',
|
||||
{ promptLength: contextPrompt.length, maxTokens },
|
||||
{ responseLength: response.length, contentPreview: response.slice(0, 100) },
|
||||
response.length > 50 ? 80 : 60, // Confidence based on response quality
|
||||
response.length > 50 ? 80 : 60,
|
||||
startTime,
|
||||
{ aiModel: this.config.model, contextUsed: context.contextHistory.length > 0 }
|
||||
);
|
||||
@ -572,11 +639,10 @@ ${JSON.stringify(conceptsToSend, null, 2)}`;
|
||||
error: error.message
|
||||
};
|
||||
|
||||
// NEW: Add Audit Entry for Failed Micro-Task
|
||||
this.addAuditEntry(context, 'micro-task', 'ai-analysis-failed',
|
||||
{ promptLength: contextPrompt.length, maxTokens },
|
||||
{ error: error.message },
|
||||
5, // Very low confidence
|
||||
5,
|
||||
startTime,
|
||||
{ aiModel: this.config.model, contextUsed: context.contextHistory.length > 0 }
|
||||
);
|
||||
@ -589,7 +655,7 @@ ${JSON.stringify(conceptsToSend, null, 2)}`;
|
||||
const isWorkflow = context.mode === 'workflow';
|
||||
const prompt = getPrompt('scenarioAnalysis', isWorkflow, context.userQuery);
|
||||
|
||||
const result = await this.callMicroTaskAI(prompt, context, 220);
|
||||
const result = await this.callMicroTaskAI(prompt, context, 400);
|
||||
|
||||
if (result.success) {
|
||||
if (isWorkflow) {
|
||||
@ -608,7 +674,7 @@ ${JSON.stringify(conceptsToSend, null, 2)}`;
|
||||
const isWorkflow = context.mode === 'workflow';
|
||||
const prompt = getPrompt('investigationApproach', isWorkflow, context.userQuery);
|
||||
|
||||
const result = await this.callMicroTaskAI(prompt, context, 220);
|
||||
const result = await this.callMicroTaskAI(prompt, context, 400);
|
||||
|
||||
if (result.success) {
|
||||
context.investigationApproach = result.content;
|
||||
@ -622,7 +688,7 @@ ${JSON.stringify(conceptsToSend, null, 2)}`;
|
||||
const isWorkflow = context.mode === 'workflow';
|
||||
const prompt = getPrompt('criticalConsiderations', isWorkflow, context.userQuery);
|
||||
|
||||
const result = await this.callMicroTaskAI(prompt, context, 180);
|
||||
const result = await this.callMicroTaskAI(prompt, context, 350);
|
||||
|
||||
if (result.success) {
|
||||
context.criticalConsiderations = result.content;
|
||||
@ -648,7 +714,7 @@ ${JSON.stringify(conceptsToSend, null, 2)}`;
|
||||
|
||||
const prompt = getPrompt('phaseToolSelection', context.userQuery, phase, phaseTools);
|
||||
|
||||
const result = await this.callMicroTaskAI(prompt, context, 450);
|
||||
const result = await this.callMicroTaskAI(prompt, context, 800);
|
||||
|
||||
if (result.success) {
|
||||
const selections = this.safeParseJSON(result.content, []);
|
||||
@ -665,7 +731,6 @@ ${JSON.stringify(conceptsToSend, null, 2)}`;
|
||||
}
|
||||
});
|
||||
|
||||
// NEW: Add audit entry for tool selection
|
||||
this.addAuditEntry(context, 'micro-task', 'phase-tool-selection',
|
||||
{ phase: phase.id, availableTools: phaseTools.length },
|
||||
{ validSelections: validSelections.length, selectedTools: validSelections.map(s => s.toolName) },
|
||||
@ -682,7 +747,7 @@ ${JSON.stringify(conceptsToSend, null, 2)}`;
|
||||
private async evaluateSpecificTool(context: AnalysisContext, tool: any, rank: number): Promise<MicroTaskResult> {
|
||||
const prompt = getPrompt('toolEvaluation', context.userQuery, tool, rank);
|
||||
|
||||
const result = await this.callMicroTaskAI(prompt, context, 650);
|
||||
const result = await this.callMicroTaskAI(prompt, context, 1200);
|
||||
|
||||
if (result.success) {
|
||||
const evaluation = this.safeParseJSON(result.content, {
|
||||
@ -702,7 +767,6 @@ ${JSON.stringify(conceptsToSend, null, 2)}`;
|
||||
}
|
||||
}, 'evaluation', evaluation.suitability_score);
|
||||
|
||||
// NEW: Add audit entry for tool evaluation
|
||||
this.addAuditEntry(context, 'micro-task', 'tool-evaluation',
|
||||
{ toolName: tool.name, rank },
|
||||
{ suitabilityScore: evaluation.suitability_score, hasExplanation: !!evaluation.detailed_explanation },
|
||||
@ -730,7 +794,7 @@ ${JSON.stringify(conceptsToSend, null, 2)}`;
|
||||
const selectedToolNames = context.selectedTools?.map(st => st.tool.name) || [];
|
||||
const prompt = getPrompt('backgroundKnowledgeSelection', context.userQuery, context.mode, selectedToolNames, availableConcepts);
|
||||
|
||||
const result = await this.callMicroTaskAI(prompt, context, 400);
|
||||
const result = await this.callMicroTaskAI(prompt, context, 700);
|
||||
|
||||
if (result.success) {
|
||||
const selections = this.safeParseJSON(result.content, []);
|
||||
@ -743,7 +807,6 @@ ${JSON.stringify(conceptsToSend, null, 2)}`;
|
||||
relevance: sel.relevance
|
||||
}));
|
||||
|
||||
// NEW: Add audit entry for background knowledge selection
|
||||
this.addAuditEntry(context, 'micro-task', 'background-knowledge-selection',
|
||||
{ availableConcepts: availableConcepts.length },
|
||||
{ selectedConcepts: context.backgroundKnowledge?.length || 0 },
|
||||
@ -761,21 +824,19 @@ ${JSON.stringify(conceptsToSend, null, 2)}`;
|
||||
const selectedToolNames = context.selectedTools?.map(st => st.tool.name) || [];
|
||||
const prompt = getPrompt('finalRecommendations', context.mode === 'workflow', context.userQuery, selectedToolNames);
|
||||
|
||||
const result = await this.callMicroTaskAI(prompt, context, 180);
|
||||
const result = await this.callMicroTaskAI(prompt, context, 350);
|
||||
return result;
|
||||
}
|
||||
|
||||
private async callAI(prompt: string, maxTokens: number = 1000): Promise<string> {
|
||||
private async callAI(prompt: string, maxTokens: number = 1500): Promise<string> {
|
||||
const endpoint = this.config.endpoint;
|
||||
const apiKey = this.config.apiKey;
|
||||
const model = this.config.model;
|
||||
|
||||
// Simple headers - add auth only if API key exists
|
||||
let headers: Record<string, string> = {
|
||||
'Content-Type': 'application/json'
|
||||
};
|
||||
|
||||
// Add authentication if API key is provided
|
||||
if (apiKey) {
|
||||
headers['Authorization'] = `Bearer ${apiKey}`;
|
||||
console.log('[AI PIPELINE] Using API key authentication');
|
||||
@ -783,7 +844,6 @@ ${JSON.stringify(conceptsToSend, null, 2)}`;
|
||||
console.log('[AI PIPELINE] No API key - making request without authentication');
|
||||
}
|
||||
|
||||
// Simple request body
|
||||
const requestBody = {
|
||||
model,
|
||||
messages: [{ role: 'user', content: prompt }],
|
||||
@ -792,7 +852,6 @@ ${JSON.stringify(conceptsToSend, null, 2)}`;
|
||||
};
|
||||
|
||||
try {
|
||||
// FIXED: Use direct fetch since entire pipeline is already queued at query.ts level
|
||||
const response = await fetch(`${endpoint}/v1/chat/completions`, {
|
||||
method: 'POST',
|
||||
headers,
|
||||
@ -826,13 +885,11 @@ ${JSON.stringify(conceptsToSend, null, 2)}`;
|
||||
let completedTasks = 0;
|
||||
let failedTasks = 0;
|
||||
|
||||
// NEW: Clear any previous temporary audit entries
|
||||
this.tempAuditEntries = [];
|
||||
|
||||
console.log(`[AI PIPELINE] Starting ${mode} query processing with context continuity and audit trail`);
|
||||
|
||||
try {
|
||||
// Stage 1: Get intelligent candidates (embeddings + AI selection)
|
||||
const toolsData = await getCompressedToolsDataForAI();
|
||||
const filteredData = await this.getIntelligentCandidates(userQuery, toolsData, mode);
|
||||
|
||||
@ -844,20 +901,17 @@ ${JSON.stringify(conceptsToSend, null, 2)}`;
|
||||
maxContextLength: this.maxContextTokens,
|
||||
currentContextLength: 0,
|
||||
seenToolNames: new Set<string>(),
|
||||
// NEW: Initialize audit trail
|
||||
auditTrail: []
|
||||
};
|
||||
|
||||
// NEW: Merge any temporary audit entries from pre-context operations
|
||||
this.mergeTemporaryAuditEntries(context);
|
||||
|
||||
console.log(`[AI PIPELINE] Starting micro-tasks with ${filteredData.tools.length} tools visible`);
|
||||
|
||||
// NEW: Add initial audit entry
|
||||
this.addAuditEntry(context, 'initialization', 'pipeline-start',
|
||||
{ userQuery, mode, toolsDataLoaded: !!toolsData },
|
||||
{ candidateTools: filteredData.tools.length, candidateConcepts: filteredData.concepts.length },
|
||||
90, // High confidence for initialization
|
||||
90,
|
||||
startTime,
|
||||
{ auditEnabled: this.auditConfig.enabled }
|
||||
);
|
||||
@ -896,19 +950,15 @@ ${JSON.stringify(conceptsToSend, null, 2)}`;
|
||||
}
|
||||
}
|
||||
|
||||
// Task 5: Background Knowledge Selection
|
||||
const knowledgeResult = await this.selectBackgroundKnowledge(context);
|
||||
if (knowledgeResult.success) completedTasks++; else failedTasks++;
|
||||
await this.delay(this.microTaskDelay);
|
||||
|
||||
// Task 6: Final Recommendations
|
||||
const finalResult = await this.generateFinalRecommendations(context);
|
||||
if (finalResult.success) completedTasks++; else failedTasks++;
|
||||
|
||||
// Build final recommendation
|
||||
const recommendation = this.buildRecommendation(context, mode, finalResult.content);
|
||||
|
||||
// NEW: Add final audit entry
|
||||
this.addAuditEntry(context, 'completion', 'pipeline-end',
|
||||
{ completedTasks, failedTasks },
|
||||
{ finalRecommendation: !!recommendation, auditEntriesGenerated: context.auditTrail.length },
|
||||
@ -935,7 +985,6 @@ ${JSON.stringify(conceptsToSend, null, 2)}`;
|
||||
return {
|
||||
recommendation: {
|
||||
...recommendation,
|
||||
// NEW: Include audit trail in response
|
||||
auditTrail: this.auditConfig.enabled ? context.auditTrail : undefined
|
||||
},
|
||||
processingStats
|
||||
@ -944,7 +993,6 @@ ${JSON.stringify(conceptsToSend, null, 2)}`;
|
||||
} catch (error) {
|
||||
console.error('[AI PIPELINE] Processing failed:', error);
|
||||
|
||||
// NEW: Ensure temp audit entries are cleared even on error
|
||||
this.tempAuditEntries = [];
|
||||
|
||||
throw error;
|
||||
|
@ -130,7 +130,6 @@ async function loadRawData(): Promise<ToolsData> {
|
||||
try {
|
||||
cachedData = ToolsDataSchema.parse(rawData);
|
||||
|
||||
// Enhanced: Add default skill level descriptions if not provided
|
||||
if (!cachedData.skill_levels || Object.keys(cachedData.skill_levels).length === 0) {
|
||||
cachedData.skill_levels = {
|
||||
novice: "Minimal technical background required, guided interfaces",
|
||||
@ -178,21 +177,18 @@ export async function getCompressedToolsDataForAI(): Promise<EnhancedCompressedT
|
||||
if (!cachedCompressedData) {
|
||||
const data = await getToolsData();
|
||||
|
||||
// Enhanced: More detailed tool information for micro-tasks
|
||||
const compressedTools = data.tools
|
||||
.filter(tool => tool.type !== 'concept')
|
||||
.map(tool => {
|
||||
const { projectUrl, statusUrl, ...compressedTool } = tool;
|
||||
return {
|
||||
...compressedTool,
|
||||
// Enhanced: Add computed fields for AI
|
||||
is_hosted: projectUrl !== undefined && projectUrl !== null && projectUrl !== "" && projectUrl.trim() !== "",
|
||||
is_open_source: tool.license && tool.license !== 'Proprietary',
|
||||
complexity_score: tool.skillLevel === 'expert' ? 5 :
|
||||
tool.skillLevel === 'advanced' ? 4 :
|
||||
tool.skillLevel === 'intermediate' ? 3 :
|
||||
tool.skillLevel === 'beginner' ? 2 : 1,
|
||||
// Enhanced: Phase-specific suitability hints
|
||||
phase_suitability: tool.phases?.map(phase => ({
|
||||
phase,
|
||||
primary_use: tool.tags?.find(tag => tag.includes(phase)) ? 'primary' : 'secondary'
|
||||
@ -206,7 +202,6 @@ export async function getCompressedToolsDataForAI(): Promise<EnhancedCompressedT
|
||||
const { projectUrl, statusUrl, platforms, accessType, license, ...compressedConcept } = concept;
|
||||
return {
|
||||
...compressedConcept,
|
||||
// Enhanced: Learning difficulty indicator
|
||||
learning_complexity: concept.skillLevel === 'expert' ? 'very_high' :
|
||||
concept.skillLevel === 'advanced' ? 'high' :
|
||||
concept.skillLevel === 'intermediate' ? 'medium' :
|
||||
|
Loading…
x
Reference in New Issue
Block a user