forensic-ai #4
13
.env.example
13
.env.example
@ -190,23 +190,20 @@ FORENSIC_AUDIT_RETENTION_HOURS=24
|
|||||||
FORENSIC_AUDIT_MAX_ENTRIES=50
|
FORENSIC_AUDIT_MAX_ENTRIES=50
|
||||||
|
|
||||||
# ============================================================================
|
# ============================================================================
|
||||||
# 10. CONFIDENCE SCORING SYSTEM (Enhancement 2)
|
# 10. ENHANCED CONFIDENCE SCORING SYSTEM
|
||||||
# ============================================================================
|
# ============================================================================
|
||||||
|
|
||||||
# Confidence component weights (must sum to 1.0)
|
# Confidence component weights (must sum to 1.0)
|
||||||
CONFIDENCE_EMBEDDINGS_WEIGHT=0.3 # Weight for vector similarity quality
|
CONFIDENCE_SEMANTIC_WEIGHT=0.25 # Weight for vector similarity quality
|
||||||
CONFIDENCE_CONSENSUS_WEIGHT=0.25 # Weight for micro-task agreement
|
CONFIDENCE_SUITABILITY_WEIGHT=0.4 # Weight for AI-determined task fitness
|
||||||
CONFIDENCE_DOMAIN_MATCH_WEIGHT=0.25 # Weight for domain alignment
|
CONFIDENCE_CONSISTENCY_WEIGHT=0.2 # Weight for cross-validation agreement
|
||||||
CONFIDENCE_FRESHNESS_WEIGHT=0.2 # Weight for tool freshness/maintenance
|
CONFIDENCE_RELIABILITY_WEIGHT=0.15 # Weight for tool quality indicators
|
||||||
|
|
||||||
# Confidence thresholds (0-100)
|
# Confidence thresholds (0-100)
|
||||||
CONFIDENCE_MINIMUM_THRESHOLD=40 # Below this = weak recommendation
|
CONFIDENCE_MINIMUM_THRESHOLD=40 # Below this = weak recommendation
|
||||||
CONFIDENCE_MEDIUM_THRESHOLD=60 # 40-59 = weak, 60-79 = moderate
|
CONFIDENCE_MEDIUM_THRESHOLD=60 # 40-59 = weak, 60-79 = moderate
|
||||||
CONFIDENCE_HIGH_THRESHOLD=80 # 80+ = strong recommendation
|
CONFIDENCE_HIGH_THRESHOLD=80 # 80+ = strong recommendation
|
||||||
|
|
||||||
# Domain keywords for confidence scoring (domain:keyword1,keyword2|domain:keyword3,keyword4)
|
|
||||||
CONFIDENCE_DOMAIN_KEYWORDS="incident-response:incident,breach,attack,compromise,response|malware-analysis:malware,virus,trojan,reverse,analysis|network-forensics:network,traffic,packet,pcap,wireshark|mobile-forensics:mobile,android,ios,phone,app|cloud-forensics:cloud,aws,azure,saas,paas"
|
|
||||||
|
|
||||||
# ============================================================================
|
# ============================================================================
|
||||||
# PERFORMANCE TUNING PRESETS
|
# PERFORMANCE TUNING PRESETS
|
||||||
# ============================================================================
|
# ============================================================================
|
||||||
|
@ -785,41 +785,41 @@ class AIQueryInterface {
|
|||||||
<div style="display: grid; grid-template-columns: 1fr; gap: 0.625rem; margin-bottom: 0.75rem;">
|
<div style="display: grid; grid-template-columns: 1fr; gap: 0.625rem; margin-bottom: 0.75rem;">
|
||||||
<div style="background: var(--color-bg-secondary); padding: 0.5rem; border-radius: 0.375rem; border-left: 3px solid var(--color-accent);">
|
<div style="background: var(--color-bg-secondary); padding: 0.5rem; border-radius: 0.375rem; border-left: 3px solid var(--color-accent);">
|
||||||
<div style="display: flex; justify-content: space-between; align-items: center; margin-bottom: 0.25rem;">
|
<div style="display: flex; justify-content: space-between; align-items: center; margin-bottom: 0.25rem;">
|
||||||
<span style="font-weight: 600; font-size: 0.6875rem;">🔍 Ähnlichkeit zur Anfrage</span>
|
<span style="font-weight: 600; font-size: 0.6875rem;">🔍 Semantische Relevanz</span>
|
||||||
<strong style="color: var(--color-accent);">${confidence.embeddingsQuality}%</strong>
|
<strong style="color: var(--color-accent);">${confidence.semanticRelevance}%</strong>
|
||||||
</div>
|
</div>
|
||||||
<div style="font-size: 0.625rem; color: var(--color-text-secondary); line-height: 1.3;">
|
<div style="font-size: 0.625rem; color: var(--color-text-secondary); line-height: 1.3;">
|
||||||
Wie gut die Tool-Beschreibung zu Ihrer Suchanfrage passt (basierend auf Vektor-Ähnlichkeit)
|
Wie gut die Tool-Beschreibung semantisch zu Ihrer Anfrage passt (basierend auf Vektor-Ähnlichkeit)
|
||||||
</div>
|
</div>
|
||||||
</div>
|
</div>
|
||||||
|
|
||||||
<div style="background: var(--color-bg-secondary); padding: 0.5rem; border-radius: 0.375rem; border-left: 3px solid var(--color-primary);">
|
<div style="background: var(--color-bg-secondary); padding: 0.5rem; border-radius: 0.375rem; border-left: 3px solid var(--color-primary);">
|
||||||
<div style="display: flex; justify-content: space-between; align-items: center; margin-bottom: 0.25rem;">
|
<div style="display: flex; justify-content: space-between; align-items: center; margin-bottom: 0.25rem;">
|
||||||
<span style="font-weight: 600; font-size: 0.6875rem;">🎯 Domain-Passung</span>
|
<span style="font-weight: 600; font-size: 0.6875rem;">🎯 Aufgaben-Eignung</span>
|
||||||
<strong style="color: var(--color-primary);">${confidence.domainAlignment}%</strong>
|
<strong style="color: var(--color-primary);">${confidence.taskSuitability}%</strong>
|
||||||
</div>
|
</div>
|
||||||
<div style="font-size: 0.625rem; color: var(--color-text-secondary); line-height: 1.3;">
|
<div style="font-size: 0.625rem; color: var(--color-text-secondary); line-height: 1.3;">
|
||||||
Wie gut das Tool-Einsatzgebiet zu Ihrem forensischen Szenario passt
|
KI-bewertete Eignung des Tools für Ihre spezifische forensische Aufgabenstellung
|
||||||
</div>
|
</div>
|
||||||
</div>
|
</div>
|
||||||
|
|
||||||
<div style="background: var(--color-bg-secondary); padding: 0.5rem; border-radius: 0.375rem; border-left: 3px solid var(--color-warning);">
|
<div style="background: var(--color-bg-secondary); padding: 0.5rem; border-radius: 0.375rem; border-left: 3px solid var(--color-warning);">
|
||||||
<div style="display: flex; justify-content: space-between; align-items: center; margin-bottom: 0.25rem;">
|
<div style="display: flex; justify-content: space-between; align-items: center; margin-bottom: 0.25rem;">
|
||||||
<span style="font-weight: 600; font-size: 0.6875rem;">🤝 KI-Konsens</span>
|
<span style="font-weight: 600; font-size: 0.6875rem;">🤝 Methodische Konsistenz</span>
|
||||||
<strong style="color: var(--color-warning);">${confidence.consensus}%</strong>
|
<strong style="color: var(--color-warning);">${confidence.methodologicalConsistency}%</strong>
|
||||||
</div>
|
</div>
|
||||||
<div style="font-size: 0.625rem; color: var(--color-text-secondary); line-height: 1.3;">
|
<div style="font-size: 0.625rem; color: var(--color-text-secondary); line-height: 1.3;">
|
||||||
Wie einig sich die verschiedenen KI-Analyseschritte über dieses Tool sind
|
Wie einheitlich verschiedene Analyseschritte dieses Tool bewerten (Kreuzvalidierung)
|
||||||
</div>
|
</div>
|
||||||
</div>
|
</div>
|
||||||
|
|
||||||
<div style="background: var(--color-bg-secondary); padding: 0.5rem; border-radius: 0.375rem; border-left: 3px solid var(--color-text-secondary);">
|
<div style="background: var(--color-bg-secondary); padding: 0.5rem; border-radius: 0.375rem; border-left: 3px solid var(--color-text-secondary);">
|
||||||
<div style="display: flex; justify-content: space-between; align-items: center; margin-bottom: 0.25rem;">
|
<div style="display: flex; justify-content: space-between; align-items: center; margin-bottom: 0.25rem;">
|
||||||
<span style="font-weight: 600; font-size: 0.6875rem;">🔄 Aktualität</span>
|
<span style="font-weight: 600; font-size: 0.6875rem;">🔧 Tool-Zuverlässigkeit</span>
|
||||||
<strong style="color: var(--color-text);">${confidence.freshness}%</strong>
|
<strong style="color: var(--color-text);">${confidence.toolReliability}%</strong>
|
||||||
</div>
|
</div>
|
||||||
<div style="font-size: 0.625rem; color: var(--color-text-secondary); line-height: 1.3;">
|
<div style="font-size: 0.625rem; color: var(--color-text-secondary); line-height: 1.3;">
|
||||||
Wie aktuell und gut gepflegt das Tool ist (basierend auf Hosting-Status, Knowledge Base, Open Source)
|
Qualitätsindikatoren: Dokumentation, Wartung, Verfügbarkeit und Benutzerfreundlichkeit
|
||||||
</div>
|
</div>
|
||||||
</div>
|
</div>
|
||||||
</div>
|
</div>
|
||||||
@ -827,7 +827,7 @@ class AIQueryInterface {
|
|||||||
${confidence.strengthIndicators && confidence.strengthIndicators.length > 0 ? `
|
${confidence.strengthIndicators && confidence.strengthIndicators.length > 0 ? `
|
||||||
<div style="margin-bottom: 0.75rem; padding: 0.5rem; background: var(--color-oss-bg); border-radius: 0.375rem; border-left: 3px solid var(--color-accent);">
|
<div style="margin-bottom: 0.75rem; padding: 0.5rem; background: var(--color-oss-bg); border-radius: 0.375rem; border-left: 3px solid var(--color-accent);">
|
||||||
<strong style="color: var(--color-accent); font-size: 0.6875rem; display: flex; align-items: center; gap: 0.25rem; margin-bottom: 0.375rem;">
|
<strong style="color: var(--color-accent); font-size: 0.6875rem; display: flex; align-items: center; gap: 0.25rem; margin-bottom: 0.375rem;">
|
||||||
<span>✓</span> Was für dieses Tool spricht:
|
<span>✓</span> Stärken dieser Empfehlung:
|
||||||
</strong>
|
</strong>
|
||||||
<ul style="margin: 0; padding-left: 1rem; font-size: 0.625rem; line-height: 1.4;">
|
<ul style="margin: 0; padding-left: 1rem; font-size: 0.625rem; line-height: 1.4;">
|
||||||
${confidence.strengthIndicators.slice(0, 3).map(s => `<li style="margin-bottom: 0.25rem;">${this.sanitizeText(s)}</li>`).join('')}
|
${confidence.strengthIndicators.slice(0, 3).map(s => `<li style="margin-bottom: 0.25rem;">${this.sanitizeText(s)}</li>`).join('')}
|
||||||
@ -838,7 +838,7 @@ class AIQueryInterface {
|
|||||||
${confidence.uncertaintyFactors && confidence.uncertaintyFactors.length > 0 ? `
|
${confidence.uncertaintyFactors && confidence.uncertaintyFactors.length > 0 ? `
|
||||||
<div style="padding: 0.5rem; background: var(--color-hosted-bg); border-radius: 0.375rem; border-left: 3px solid var(--color-warning);">
|
<div style="padding: 0.5rem; background: var(--color-hosted-bg); border-radius: 0.375rem; border-left: 3px solid var(--color-warning);">
|
||||||
<strong style="color: var(--color-warning); font-size: 0.6875rem; display: flex; align-items: center; gap: 0.25rem; margin-bottom: 0.375rem;">
|
<strong style="color: var(--color-warning); font-size: 0.6875rem; display: flex; align-items: center; gap: 0.25rem; margin-bottom: 0.375rem;">
|
||||||
<span>⚠</span> Unsicherheitsfaktoren:
|
<span>⚠</span> Mögliche Einschränkungen:
|
||||||
</strong>
|
</strong>
|
||||||
<ul style="margin: 0; padding-left: 1rem; font-size: 0.625rem; line-height: 1.4;">
|
<ul style="margin: 0; padding-left: 1rem; font-size: 0.625rem; line-height: 1.4;">
|
||||||
${confidence.uncertaintyFactors.slice(0, 3).map(f => `<li style="margin-bottom: 0.25rem;">${this.sanitizeText(f)}</li>`).join('')}
|
${confidence.uncertaintyFactors.slice(0, 3).map(f => `<li style="margin-bottom: 0.25rem;">${this.sanitizeText(f)}</li>`).join('')}
|
||||||
@ -847,7 +847,7 @@ class AIQueryInterface {
|
|||||||
` : ''}
|
` : ''}
|
||||||
|
|
||||||
<div style="margin-top: 0.75rem; padding-top: 0.75rem; border-top: 1px solid var(--color-border); font-size: 0.625rem; color: var(--color-text-secondary); text-align: center;">
|
<div style="margin-top: 0.75rem; padding-top: 0.75rem; border-top: 1px solid var(--color-border); font-size: 0.625rem; color: var(--color-text-secondary); text-align: center;">
|
||||||
Vertrauensscore basiert auf KI-Analyse • Forensisch validiert
|
Mehrstufige KI-Analyse mit Kreuzvalidierung
|
||||||
</div>
|
</div>
|
||||||
</div>
|
</div>
|
||||||
</span>
|
</span>
|
||||||
|
@ -147,7 +147,7 @@ Antworten Sie AUSSCHLIESSLICH mit diesem JSON-Format (kein zusätzlicher Text):
|
|||||||
|
|
||||||
// Tool evaluation prompt
|
// Tool evaluation prompt
|
||||||
toolEvaluation: (userQuery: string, tool: any, rank: number) => {
|
toolEvaluation: (userQuery: string, tool: any, rank: number) => {
|
||||||
return `Bewerten Sie diese Methode/Tool fallbezogen für das spezifische Problem nach forensischen Qualitätskriterien.
|
return `Sie sind ein DFIR-Experte und bewerten ein forensisches Tool für eine spezifische Aufgabe.
|
||||||
|
|
||||||
PROBLEM: "${userQuery}"
|
PROBLEM: "${userQuery}"
|
||||||
|
|
||||||
@ -155,16 +155,26 @@ TOOL: ${tool.name}
|
|||||||
BESCHREIBUNG: ${tool.description}
|
BESCHREIBUNG: ${tool.description}
|
||||||
PLATTFORMEN: ${tool.platforms?.join(', ') || 'N/A'}
|
PLATTFORMEN: ${tool.platforms?.join(', ') || 'N/A'}
|
||||||
SKILL LEVEL: ${tool.skillLevel}
|
SKILL LEVEL: ${tool.skillLevel}
|
||||||
|
DOMAINS: ${tool.domains?.join(', ') || 'N/A'}
|
||||||
|
TAGS: ${tool.tags?.join(', ') || 'N/A'}
|
||||||
|
|
||||||
Bewerten Sie nach forensischen Standards und antworten Sie AUSSCHLIESSLICH mit diesem JSON-Format:
|
Bewerten Sie nach forensischen Standards und antworten Sie AUSSCHLIESSLICH mit diesem JSON-Format:
|
||||||
{
|
{
|
||||||
"suitability_score": "high|medium|low",
|
"suitability_score": "high|medium|low",
|
||||||
|
"task_relevance": 85,
|
||||||
"detailed_explanation": "Detaillierte forensische Begründung warum diese Methode/Tool das Problem löst",
|
"detailed_explanation": "Detaillierte forensische Begründung warum diese Methode/Tool das Problem löst",
|
||||||
"implementation_approach": "Konkrete methodische Schritte zur korrekten Anwendung für dieses spezifische Problem",
|
"implementation_approach": "Konkrete methodische Schritte zur korrekten Anwendung für dieses spezifische Problem",
|
||||||
"pros": ["Forensischer Vorteil 1", "Validierter Vorteil 2"],
|
"pros": ["Forensischer Vorteil 1", "Validierter Vorteil 2"],
|
||||||
"cons": ["Methodische Limitation 1", "Potenzielle Schwäche 2"],
|
"cons": ["Methodische Limitation 1", "Potenzielle Schwäche 2"],
|
||||||
|
"limitations": ["Spezifische Einschränkung 1", "Mögliche Problematik 2"],
|
||||||
"alternatives": "Alternative Ansätze falls diese Methode/Tool nicht optimal ist"
|
"alternatives": "Alternative Ansätze falls diese Methode/Tool nicht optimal ist"
|
||||||
}`;
|
}
|
||||||
|
|
||||||
|
WICHTIG:
|
||||||
|
- task_relevance: Numerischer Wert 0-100 wie gut das Tool für DIESE SPEZIFISCHE Aufgabe geeignet ist
|
||||||
|
- limitations: Konkrete Einschränkungen oder Situationen wo das Tool NICHT optimal wäre
|
||||||
|
- Berücksichtigen Sie den Skill Level vs. Anfrage-Komplexität
|
||||||
|
- Bewerten Sie objektiv, nicht beschönigend`;
|
||||||
},
|
},
|
||||||
|
|
||||||
// Background knowledge selection prompt
|
// Background knowledge selection prompt
|
||||||
@ -191,7 +201,7 @@ Antworten Sie AUSSCHLIESSLICH mit diesem JSON-Format:
|
|||||||
// Final recommendations prompt
|
// Final recommendations prompt
|
||||||
finalRecommendations: (isWorkflow: boolean, userQuery: string, selectedToolNames: string[]) => {
|
finalRecommendations: (isWorkflow: boolean, userQuery: string, selectedToolNames: string[]) => {
|
||||||
const prompt = isWorkflow ?
|
const prompt = isWorkflow ?
|
||||||
`Erstellen Sie eine forensisch fundierte Workflow-Empfehlung basierend auf DFIR-Prinzipien.
|
`Erstellen Sie eine Workflow-Empfehlung basierend auf DFIR-Prinzipien.
|
||||||
|
|
||||||
SZENARIO: "${userQuery}"
|
SZENARIO: "${userQuery}"
|
||||||
AUSGEWÄHLTE TOOLS: ${selectedToolNames.join(', ') || 'Keine Tools ausgewählt'}
|
AUSGEWÄHLTE TOOLS: ${selectedToolNames.join(', ') || 'Keine Tools ausgewählt'}
|
||||||
|
@ -1,7 +1,7 @@
|
|||||||
// src/utils/aiPipeline.ts - Enhanced with Audit Trail System
|
// src/utils/aiPipeline.ts - Enhanced with Proper Confidence Scoring
|
||||||
|
|
||||||
import { getCompressedToolsDataForAI } from './dataService.js';
|
import { getCompressedToolsDataForAI } from './dataService.js';
|
||||||
import { embeddingsService, type EmbeddingData } from './embeddings.js';
|
import { embeddingsService, type EmbeddingData, type SimilarityResult } from './embeddings.js';
|
||||||
import { AI_PROMPTS, getPrompt } from '../config/prompts.js';
|
import { AI_PROMPTS, getPrompt } from '../config/prompts.js';
|
||||||
import { isToolHosted } from './toolHelpers.js';
|
import { isToolHosted } from './toolHelpers.js';
|
||||||
|
|
||||||
@ -34,11 +34,11 @@ interface AnalysisResult {
|
|||||||
|
|
||||||
interface AuditEntry {
|
interface AuditEntry {
|
||||||
timestamp: number;
|
timestamp: number;
|
||||||
phase: string; // 'retrieval', 'selection', 'micro-task-N'
|
phase: string;
|
||||||
action: string; // 'embeddings-search', 'ai-selection', 'tool-evaluation'
|
action: string;
|
||||||
input: any; // What went into this step
|
input: any;
|
||||||
output: any; // What came out of this step
|
output: any;
|
||||||
confidence: number; // 0-100: How confident we are in this step
|
confidence: number;
|
||||||
processingTimeMs: number;
|
processingTimeMs: number;
|
||||||
metadata: Record<string, any>;
|
metadata: Record<string, any>;
|
||||||
}
|
}
|
||||||
@ -56,29 +56,27 @@ interface AnalysisContext {
|
|||||||
problemAnalysis?: string;
|
problemAnalysis?: string;
|
||||||
investigationApproach?: string;
|
investigationApproach?: string;
|
||||||
criticalConsiderations?: string;
|
criticalConsiderations?: string;
|
||||||
selectedTools?: Array<{tool: any, phase: string, priority: string, justification?: string}>;
|
selectedTools?: Array<{tool: any, phase: string, priority: string, justification?: string, taskRelevance?: number, limitations?: string[]}>;
|
||||||
backgroundKnowledge?: Array<{concept: any, relevance: string}>;
|
backgroundKnowledge?: Array<{concept: any, relevance: string}>;
|
||||||
|
|
||||||
seenToolNames: Set<string>;
|
seenToolNames: Set<string>;
|
||||||
|
|
||||||
auditTrail: AuditEntry[];
|
auditTrail: AuditEntry[];
|
||||||
}
|
|
||||||
|
// Store actual similarity data from embeddings
|
||||||
interface SimilarityResult extends EmbeddingData {
|
embeddingsSimilarities: Map<string, number>;
|
||||||
similarity: number;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
interface ConfidenceMetrics {
|
interface ConfidenceMetrics {
|
||||||
overall: number; // 0-100: Combined confidence score
|
overall: number; // 0-100: Combined confidence score
|
||||||
embeddingsQuality: number; // How well embeddings matched
|
semanticRelevance: number; // How well tool description matches query (from embeddings)
|
||||||
domainAlignment: number; // How well tools match scenario domain
|
taskSuitability: number; // AI-determined fitness for this specific task
|
||||||
consensus: number; // How much micro-tasks agree
|
methodologicalConsistency: number; // How well different analysis steps agree
|
||||||
freshness: number; // How recent/up-to-date the selection is
|
toolReliability: number; // Indicators of tool quality and maintenance
|
||||||
uncertaintyFactors: string[]; // What could make this wrong
|
uncertaintyFactors: string[]; // Specific reasons why this might not work
|
||||||
strengthIndicators: string[]; // What makes this recommendation strong
|
strengthIndicators: string[]; // Specific reasons why this is a good choice
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
class ImprovedMicroTaskAIPipeline {
|
class ImprovedMicroTaskAIPipeline {
|
||||||
private config: AIConfig;
|
private config: AIConfig;
|
||||||
private maxSelectedItems: number;
|
private maxSelectedItems: number;
|
||||||
@ -105,10 +103,10 @@ class ImprovedMicroTaskAIPipeline {
|
|||||||
};
|
};
|
||||||
|
|
||||||
private confidenceConfig: {
|
private confidenceConfig: {
|
||||||
embeddingsWeight: number;
|
semanticWeight: number; // Weight for embeddings similarity
|
||||||
consensusWeight: number;
|
suitabilityWeight: number; // Weight for AI task fit evaluation
|
||||||
domainMatchWeight: number;
|
consistencyWeight: number; // Weight for cross-validation agreement
|
||||||
freshnessWeight: number;
|
reliabilityWeight: number; // Weight for tool quality indicators
|
||||||
minimumThreshold: number;
|
minimumThreshold: number;
|
||||||
mediumThreshold: number;
|
mediumThreshold: number;
|
||||||
highThreshold: number;
|
highThreshold: number;
|
||||||
@ -146,25 +144,19 @@ class ImprovedMicroTaskAIPipeline {
|
|||||||
retentionHours: parseInt(process.env.FORENSIC_AUDIT_RETENTION_HOURS || '72', 10)
|
retentionHours: parseInt(process.env.FORENSIC_AUDIT_RETENTION_HOURS || '72', 10)
|
||||||
};
|
};
|
||||||
|
|
||||||
console.log('[AI PIPELINE] Configuration loaded:', {
|
// Updated confidence weights - more focused on AI evaluation
|
||||||
embeddingCandidates: this.embeddingCandidates,
|
|
||||||
embeddingSelection: `${this.embeddingSelectionLimit} tools, ${this.embeddingConceptsLimit} concepts`,
|
|
||||||
noEmbeddingsLimits: `${this.noEmbeddingsToolLimit || 'unlimited'} tools, ${this.noEmbeddingsConceptLimit || 'unlimited'} concepts`,
|
|
||||||
auditEnabled: this.auditConfig.enabled
|
|
||||||
});
|
|
||||||
|
|
||||||
this.confidenceConfig = {
|
this.confidenceConfig = {
|
||||||
embeddingsWeight: parseFloat(process.env.CONFIDENCE_EMBEDDINGS_WEIGHT || '0.3'),
|
semanticWeight: parseFloat(process.env.CONFIDENCE_SEMANTIC_WEIGHT || '0.25'), // Embeddings similarity
|
||||||
consensusWeight: parseFloat(process.env.CONFIDENCE_CONSENSUS_WEIGHT || '0.25'),
|
suitabilityWeight: parseFloat(process.env.CONFIDENCE_SUITABILITY_WEIGHT || '0.4'), // AI task fit evaluation
|
||||||
domainMatchWeight: parseFloat(process.env.CONFIDENCE_DOMAIN_MATCH_WEIGHT || '0.25'),
|
consistencyWeight: parseFloat(process.env.CONFIDENCE_CONSISTENCY_WEIGHT || '0.2'), // Cross-validation agreement
|
||||||
freshnessWeight: parseFloat(process.env.CONFIDENCE_FRESHNESS_WEIGHT || '0.2'),
|
reliabilityWeight: parseFloat(process.env.CONFIDENCE_RELIABILITY_WEIGHT || '0.15'), // Tool quality indicators
|
||||||
minimumThreshold: parseInt(process.env.CONFIDENCE_MINIMUM_THRESHOLD || '40', 10),
|
minimumThreshold: parseInt(process.env.CONFIDENCE_MINIMUM_THRESHOLD || '40', 10),
|
||||||
mediumThreshold: parseInt(process.env.CONFIDENCE_MEDIUM_THRESHOLD || '60', 10),
|
mediumThreshold: parseInt(process.env.CONFIDENCE_MEDIUM_THRESHOLD || '60', 10),
|
||||||
highThreshold: parseInt(process.env.CONFIDENCE_HIGH_THRESHOLD || '80', 10)
|
highThreshold: parseInt(process.env.CONFIDENCE_HIGH_THRESHOLD || '80', 10)
|
||||||
};
|
};
|
||||||
|
|
||||||
console.log('[AI PIPELINE] Confidence scoring enabled:', {
|
console.log('[AI PIPELINE] Enhanced confidence scoring enabled:', {
|
||||||
weights: `E:${this.confidenceConfig.embeddingsWeight} C:${this.confidenceConfig.consensusWeight} D:${this.confidenceConfig.domainMatchWeight} F:${this.confidenceConfig.freshnessWeight}`,
|
weights: `Semantic:${this.confidenceConfig.semanticWeight} Suitability:${this.confidenceConfig.suitabilityWeight} Consistency:${this.confidenceConfig.consistencyWeight} Reliability:${this.confidenceConfig.reliabilityWeight}`,
|
||||||
thresholds: `${this.confidenceConfig.minimumThreshold}/${this.confidenceConfig.mediumThreshold}/${this.confidenceConfig.highThreshold}`
|
thresholds: `${this.confidenceConfig.minimumThreshold}/${this.confidenceConfig.mediumThreshold}/${this.confidenceConfig.highThreshold}`
|
||||||
});
|
});
|
||||||
}
|
}
|
||||||
@ -247,8 +239,8 @@ class ImprovedMicroTaskAIPipeline {
|
|||||||
let confidence = 60; // Base confidence
|
let confidence = 60; // Base confidence
|
||||||
|
|
||||||
if (selectionRatio > 0.05 && selectionRatio < 0.3) confidence += 20;
|
if (selectionRatio > 0.05 && selectionRatio < 0.3) confidence += 20;
|
||||||
else if (selectionRatio <= 0.05) confidence -= 10; // Too few
|
else if (selectionRatio <= 0.05) confidence -= 10;
|
||||||
else confidence -= 15; // Too many
|
else confidence -= 15;
|
||||||
|
|
||||||
if (hasReasoning) confidence += 15;
|
if (hasReasoning) confidence += 15;
|
||||||
|
|
||||||
@ -357,7 +349,7 @@ class ImprovedMicroTaskAIPipeline {
|
|||||||
const possibleTools = toolMatches
|
const possibleTools = toolMatches
|
||||||
.map(match => match.replace(/"/g, ''))
|
.map(match => match.replace(/"/g, ''))
|
||||||
.filter(name => name.length > 2 && !['selectedTools', 'selectedConcepts', 'reasoning'].includes(name))
|
.filter(name => name.length > 2 && !['selectedTools', 'selectedConcepts', 'reasoning'].includes(name))
|
||||||
.slice(0, 15); // Reasonable limit
|
.slice(0, 15);
|
||||||
|
|
||||||
if (possibleTools.length > 0) {
|
if (possibleTools.length > 0) {
|
||||||
console.log(`[AI PIPELINE] Recovered ${possibleTools.length} possible tool names from broken JSON`);
|
console.log(`[AI PIPELINE] Recovered ${possibleTools.length} possible tool names from broken JSON`);
|
||||||
@ -374,7 +366,7 @@ class ImprovedMicroTaskAIPipeline {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
private addToolToSelection(context: AnalysisContext, tool: any, phase: string, priority: string, justification?: string): boolean {
|
private addToolToSelection(context: AnalysisContext, tool: any, phase: string, priority: string, justification?: string, taskRelevance?: number, limitations?: string[]): boolean {
|
||||||
context.seenToolNames.add(tool.name);
|
context.seenToolNames.add(tool.name);
|
||||||
if (!context.selectedTools) context.selectedTools = [];
|
if (!context.selectedTools) context.selectedTools = [];
|
||||||
|
|
||||||
@ -382,18 +374,22 @@ class ImprovedMicroTaskAIPipeline {
|
|||||||
tool,
|
tool,
|
||||||
phase,
|
phase,
|
||||||
priority,
|
priority,
|
||||||
justification
|
justification,
|
||||||
|
taskRelevance,
|
||||||
|
limitations
|
||||||
});
|
});
|
||||||
|
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
private async getIntelligentCandidates(userQuery: string, toolsData: any, mode: string) {
|
private async getIntelligentCandidates(userQuery: string, toolsData: any, mode: string, context: AnalysisContext) {
|
||||||
let candidateTools: any[] = [];
|
let candidateTools: any[] = [];
|
||||||
let candidateConcepts: any[] = [];
|
let candidateConcepts: any[] = [];
|
||||||
let selectionMethod = 'unknown';
|
let selectionMethod = 'unknown';
|
||||||
|
|
||||||
// WAIT for embeddings initialization if embeddings are enabled
|
// Initialize embeddings similarities storage
|
||||||
|
context.embeddingsSimilarities = new Map<string, number>();
|
||||||
|
|
||||||
if (process.env.AI_EMBEDDINGS_ENABLED === 'true') {
|
if (process.env.AI_EMBEDDINGS_ENABLED === 'true') {
|
||||||
try {
|
try {
|
||||||
console.log('[AI PIPELINE] Waiting for embeddings initialization...');
|
console.log('[AI PIPELINE] Waiting for embeddings initialization...');
|
||||||
@ -414,6 +410,11 @@ class ImprovedMicroTaskAIPipeline {
|
|||||||
|
|
||||||
console.log(`[AI PIPELINE] Embeddings found ${similarItems.length} similar items`);
|
console.log(`[AI PIPELINE] Embeddings found ${similarItems.length} similar items`);
|
||||||
|
|
||||||
|
// Store actual similarity scores for confidence calculation
|
||||||
|
similarItems.forEach(item => {
|
||||||
|
context.embeddingsSimilarities.set(item.name, item.similarity);
|
||||||
|
});
|
||||||
|
|
||||||
const toolsMap = new Map<string, any>(toolsData.tools.map((tool: any) => [tool.name, tool]));
|
const toolsMap = new Map<string, any>(toolsData.tools.map((tool: any) => [tool.name, tool]));
|
||||||
const conceptsMap = new Map<string, any>(toolsData.concepts.map((concept: any) => [concept.name, concept]));
|
const conceptsMap = new Map<string, any>(toolsData.concepts.map((concept: any) => [concept.name, concept]));
|
||||||
|
|
||||||
@ -450,7 +451,7 @@ class ImprovedMicroTaskAIPipeline {
|
|||||||
}
|
}
|
||||||
|
|
||||||
if (this.auditConfig.enabled) {
|
if (this.auditConfig.enabled) {
|
||||||
this.addAuditEntry(null, 'retrieval', 'embeddings-search',
|
this.addAuditEntry(context, 'retrieval', 'embeddings-search',
|
||||||
{ query: userQuery, threshold: this.similarityThreshold, candidates: this.embeddingCandidates },
|
{ query: userQuery, threshold: this.similarityThreshold, candidates: this.embeddingCandidates },
|
||||||
{
|
{
|
||||||
candidatesFound: similarItems.length,
|
candidatesFound: similarItems.length,
|
||||||
@ -459,7 +460,8 @@ class ImprovedMicroTaskAIPipeline {
|
|||||||
reductionRatio: reductionRatio,
|
reductionRatio: reductionRatio,
|
||||||
usingEmbeddings: selectionMethod === 'embeddings_candidates',
|
usingEmbeddings: selectionMethod === 'embeddings_candidates',
|
||||||
totalAvailable: totalAvailableTools,
|
totalAvailable: totalAvailableTools,
|
||||||
filtered: similarTools.length
|
filtered: similarTools.length,
|
||||||
|
avgSimilarity: similarItems.length > 0 ? similarItems.reduce((sum, item) => sum + item.similarity, 0) / similarItems.length : 0
|
||||||
},
|
},
|
||||||
selectionMethod === 'embeddings_candidates' ? 85 : 60,
|
selectionMethod === 'embeddings_candidates' ? 85 : 60,
|
||||||
embeddingsStart,
|
embeddingsStart,
|
||||||
@ -479,7 +481,7 @@ class ImprovedMicroTaskAIPipeline {
|
|||||||
}
|
}
|
||||||
|
|
||||||
console.log(`[AI PIPELINE] AI will analyze ${candidateTools.length} candidate tools (method: ${selectionMethod})`);
|
console.log(`[AI PIPELINE] AI will analyze ${candidateTools.length} candidate tools (method: ${selectionMethod})`);
|
||||||
const finalSelection = await this.aiSelectionWithFullData(userQuery, candidateTools, candidateConcepts, mode, selectionMethod);
|
const finalSelection = await this.aiSelectionWithFullData(userQuery, candidateTools, candidateConcepts, mode, selectionMethod, context);
|
||||||
|
|
||||||
return {
|
return {
|
||||||
tools: finalSelection.selectedTools,
|
tools: finalSelection.selectedTools,
|
||||||
@ -495,7 +497,8 @@ class ImprovedMicroTaskAIPipeline {
|
|||||||
candidateTools: any[],
|
candidateTools: any[],
|
||||||
candidateConcepts: any[],
|
candidateConcepts: any[],
|
||||||
mode: string,
|
mode: string,
|
||||||
selectionMethod: string
|
selectionMethod: string,
|
||||||
|
context: AnalysisContext
|
||||||
) {
|
) {
|
||||||
const selectionStart = Date.now();
|
const selectionStart = Date.now();
|
||||||
|
|
||||||
@ -576,7 +579,7 @@ ${JSON.stringify(conceptsToSend, null, 2)}`;
|
|||||||
console.error('[AI PIPELINE] AI selection returned invalid structure:', response.slice(0, 200));
|
console.error('[AI PIPELINE] AI selection returned invalid structure:', response.slice(0, 200));
|
||||||
|
|
||||||
if (this.auditConfig.enabled) {
|
if (this.auditConfig.enabled) {
|
||||||
this.addAuditEntry(null, 'selection', 'ai-tool-selection-failed',
|
this.addAuditEntry(context, 'selection', 'ai-tool-selection-failed',
|
||||||
{ candidateCount: candidateTools.length, mode, prompt: prompt.slice(0, 200) },
|
{ candidateCount: candidateTools.length, mode, prompt: prompt.slice(0, 200) },
|
||||||
{ error: 'Invalid JSON structure', response: response.slice(0, 200) },
|
{ error: 'Invalid JSON structure', response: response.slice(0, 200) },
|
||||||
10,
|
10,
|
||||||
@ -602,7 +605,7 @@ ${JSON.stringify(conceptsToSend, null, 2)}`;
|
|||||||
if (this.auditConfig.enabled) {
|
if (this.auditConfig.enabled) {
|
||||||
const confidence = this.calculateSelectionConfidence(result, candidateTools.length);
|
const confidence = this.calculateSelectionConfidence(result, candidateTools.length);
|
||||||
|
|
||||||
this.addAuditEntry(null, 'selection', 'ai-tool-selection',
|
this.addAuditEntry(context, 'selection', 'ai-tool-selection',
|
||||||
{ candidateCount: candidateTools.length, mode, promptLength: prompt.length },
|
{ candidateCount: candidateTools.length, mode, promptLength: prompt.length },
|
||||||
{
|
{
|
||||||
selectedToolCount: result.selectedTools.length,
|
selectedToolCount: result.selectedTools.length,
|
||||||
@ -626,7 +629,7 @@ ${JSON.stringify(conceptsToSend, null, 2)}`;
|
|||||||
console.error('[AI PIPELINE] AI selection failed:', error);
|
console.error('[AI PIPELINE] AI selection failed:', error);
|
||||||
|
|
||||||
if (this.auditConfig.enabled) {
|
if (this.auditConfig.enabled) {
|
||||||
this.addAuditEntry(null, 'selection', 'ai-tool-selection-error',
|
this.addAuditEntry(context, 'selection', 'ai-tool-selection-error',
|
||||||
{ candidateCount: candidateTools.length, mode },
|
{ candidateCount: candidateTools.length, mode },
|
||||||
{ error: error.message },
|
{ error: error.message },
|
||||||
5,
|
5,
|
||||||
@ -700,38 +703,225 @@ ${JSON.stringify(conceptsToSend, null, 2)}`;
|
|||||||
|
|
||||||
private calculateRecommendationConfidence(
|
private calculateRecommendationConfidence(
|
||||||
tool: any,
|
tool: any,
|
||||||
embeddingsSimilarity: number,
|
context: AnalysisContext,
|
||||||
domainMatch: boolean,
|
taskRelevance: number = 70,
|
||||||
microTaskAgreement: number,
|
limitations: string[] = []
|
||||||
context: AnalysisContext
|
|
||||||
): ConfidenceMetrics {
|
): ConfidenceMetrics {
|
||||||
|
|
||||||
const embeddingsQuality = Math.min(100, embeddingsSimilarity * 100 * 2); // Scale 0.5 similarity to 100%
|
// 1. Semantic Relevance: Real embeddings similarity score
|
||||||
const domainAlignment = domainMatch ? 90 : (tool.domains?.length > 0 ? 60 : 30);
|
const semanticRelevance = context.embeddingsSimilarities.has(tool.name) ?
|
||||||
const consensus = Math.min(100, microTaskAgreement * 100);
|
Math.round(context.embeddingsSimilarities.get(tool.name)! * 100) : 50;
|
||||||
const freshness = this.calculateToolFreshness(tool);
|
|
||||||
|
|
||||||
|
// 2. Task Suitability: AI-determined fitness for specific task
|
||||||
|
const taskSuitability = Math.round(taskRelevance);
|
||||||
|
|
||||||
|
// 3. Methodological Consistency: Cross-validation between micro-tasks
|
||||||
|
const methodologicalConsistency = this.calculateCrossValidationScore(tool.name, context);
|
||||||
|
|
||||||
|
// 4. Tool Reliability: Quality indicators
|
||||||
|
const toolReliability = this.calculateToolReliability(tool);
|
||||||
|
|
||||||
|
// Debug logging
|
||||||
|
console.log(`[CONFIDENCE DEBUG] ${tool.name}:`, {
|
||||||
|
semantic: semanticRelevance,
|
||||||
|
taskSuitability: taskSuitability,
|
||||||
|
consistency: methodologicalConsistency,
|
||||||
|
reliability: toolReliability,
|
||||||
|
hasEmbeddingsSimilarity: context.embeddingsSimilarities.has(tool.name),
|
||||||
|
rawTaskRelevance: taskRelevance
|
||||||
|
});
|
||||||
|
|
||||||
|
// Calculate weighted overall score
|
||||||
const overall = (
|
const overall = (
|
||||||
embeddingsQuality * this.confidenceConfig.embeddingsWeight +
|
semanticRelevance * this.confidenceConfig.semanticWeight +
|
||||||
domainAlignment * this.confidenceConfig.domainMatchWeight +
|
taskSuitability * this.confidenceConfig.suitabilityWeight +
|
||||||
consensus * this.confidenceConfig.consensusWeight +
|
methodologicalConsistency * this.confidenceConfig.consistencyWeight +
|
||||||
freshness * this.confidenceConfig.freshnessWeight
|
toolReliability * this.confidenceConfig.reliabilityWeight
|
||||||
);
|
);
|
||||||
|
|
||||||
const uncertaintyFactors = this.identifyUncertaintyFactors(tool, context, overall);
|
const uncertaintyFactors = this.identifySpecificUncertaintyFactors(tool, context, limitations, overall);
|
||||||
const strengthIndicators = this.identifyStrengthIndicators(tool, context, overall);
|
const strengthIndicators = this.identifySpecificStrengthIndicators(tool, context, overall);
|
||||||
|
|
||||||
return {
|
return {
|
||||||
overall: Math.round(overall),
|
overall: Math.round(overall),
|
||||||
embeddingsQuality: Math.round(embeddingsQuality),
|
semanticRelevance: Math.round(semanticRelevance),
|
||||||
domainAlignment: Math.round(domainAlignment),
|
taskSuitability: Math.round(taskSuitability),
|
||||||
consensus: Math.round(consensus),
|
methodologicalConsistency: Math.round(methodologicalConsistency),
|
||||||
freshness: Math.round(freshness),
|
toolReliability: Math.round(toolReliability),
|
||||||
uncertaintyFactors,
|
uncertaintyFactors,
|
||||||
strengthIndicators
|
strengthIndicators
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
|
|
||||||
|
private calculateCrossValidationScore(toolName: string, context: AnalysisContext): number {
|
||||||
|
// Look for entries where this tool was mentioned across different phases
|
||||||
|
const relevantEntries = context.auditTrail.filter(entry =>
|
||||||
|
entry.phase === 'micro-task' || entry.phase === 'selection'
|
||||||
|
);
|
||||||
|
|
||||||
|
let toolMentions = 0;
|
||||||
|
let positiveEvaluations = 0;
|
||||||
|
let confidenceSum = 0;
|
||||||
|
|
||||||
|
relevantEntries.forEach(entry => {
|
||||||
|
let toolFound = false;
|
||||||
|
|
||||||
|
// Check various ways the tool might be referenced in output
|
||||||
|
if (entry.output && typeof entry.output === 'object') {
|
||||||
|
// Check selectedTools arrays
|
||||||
|
if (Array.isArray(entry.output.selectedTools) &&
|
||||||
|
entry.output.selectedTools.includes(toolName)) {
|
||||||
|
toolFound = true;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Check finalToolNames arrays
|
||||||
|
if (Array.isArray(entry.output.finalToolNames) &&
|
||||||
|
entry.output.finalToolNames.includes(toolName)) {
|
||||||
|
toolFound = true;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Check toolName in individual evaluation
|
||||||
|
if (entry.output.toolName === toolName) {
|
||||||
|
toolFound = true;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (toolFound) {
|
||||||
|
toolMentions++;
|
||||||
|
confidenceSum += entry.confidence;
|
||||||
|
|
||||||
|
// Consider it positive if confidence >= 60
|
||||||
|
if (entry.confidence >= 60) {
|
||||||
|
positiveEvaluations++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
});
|
||||||
|
|
||||||
|
console.log(`[AI PIPELINE] Cross-validation for ${toolName}: ${toolMentions} mentions, ${positiveEvaluations} positive, avg confidence: ${toolMentions > 0 ? Math.round(confidenceSum / toolMentions) : 0}`);
|
||||||
|
|
||||||
|
if (toolMentions === 0) {
|
||||||
|
return 60; // Default when no cross-validation data available
|
||||||
|
}
|
||||||
|
|
||||||
|
if (toolMentions === 1) {
|
||||||
|
// Single mention - use confidence directly but cap it
|
||||||
|
return Math.min(85, Math.max(40, confidenceSum));
|
||||||
|
}
|
||||||
|
|
||||||
|
// Multiple mentions - calculate agreement ratio
|
||||||
|
const agreementRatio = positiveEvaluations / toolMentions;
|
||||||
|
const avgConfidence = confidenceSum / toolMentions;
|
||||||
|
|
||||||
|
// Combine agreement ratio with average confidence
|
||||||
|
const crossValidationScore = (agreementRatio * 0.7 + (avgConfidence / 100) * 0.3) * 100;
|
||||||
|
|
||||||
|
return Math.round(Math.min(95, Math.max(30, crossValidationScore)));
|
||||||
|
}
|
||||||
|
|
||||||
|
// NEW: Calculate tool reliability based on objective indicators
|
||||||
|
private calculateToolReliability(tool: any): number {
|
||||||
|
let reliability = 50; // Base score
|
||||||
|
|
||||||
|
// Documentation availability
|
||||||
|
if (tool.knowledgebase === true) reliability += 25;
|
||||||
|
|
||||||
|
// Active maintenance (hosted tools are typically maintained)
|
||||||
|
if (isToolHosted(tool)) reliability += 20;
|
||||||
|
|
||||||
|
// Community support (open source often has community)
|
||||||
|
if (tool.license && tool.license !== 'Proprietary') reliability += 10;
|
||||||
|
|
||||||
|
// Skill level appropriateness (not too complex, not too simple)
|
||||||
|
if (tool.skillLevel === 'intermediate' || tool.skillLevel === 'advanced') reliability += 10;
|
||||||
|
else if (tool.skillLevel === 'expert') reliability -= 5; // May be overcomplicated
|
||||||
|
|
||||||
|
// Multi-platform support (more versatile)
|
||||||
|
if (tool.platforms && tool.platforms.length > 1) reliability += 5;
|
||||||
|
|
||||||
|
return Math.min(100, reliability);
|
||||||
|
}
|
||||||
|
|
||||||
|
// NEW: Identify specific uncertainty factors based on analysis
|
||||||
|
private identifySpecificUncertaintyFactors(tool: any, context: AnalysisContext, limitations: string[], confidence: number): string[] {
|
||||||
|
const factors: string[] = [];
|
||||||
|
|
||||||
|
// Add AI-identified limitations
|
||||||
|
if (limitations && limitations.length > 0) {
|
||||||
|
factors.push(...limitations.slice(0, 3)); // Limit to top 3
|
||||||
|
}
|
||||||
|
|
||||||
|
// Low semantic similarity
|
||||||
|
const similarity = context.embeddingsSimilarities.get(tool.name) || 0.5;
|
||||||
|
if (similarity < 0.4) {
|
||||||
|
factors.push('Geringe semantische Ähnlichkeit zur Anfrage - Tool-Beschreibung passt möglicherweise nicht optimal');
|
||||||
|
}
|
||||||
|
|
||||||
|
// Skill level mismatch
|
||||||
|
if (tool.skillLevel === 'expert' && /schnell|rapid|triage|urgent/i.test(context.userQuery)) {
|
||||||
|
factors.push('Experten-Tool für Eilszenario - möglicherweise zu komplex für schnelle Antworten');
|
||||||
|
}
|
||||||
|
|
||||||
|
if (tool.skillLevel === 'novice' && /komplex|erweitert|tiefgehend|advanced/i.test(context.userQuery)) {
|
||||||
|
factors.push('Einsteiger-Tool für komplexes Szenario - könnte funktionale Einschränkungen haben');
|
||||||
|
}
|
||||||
|
|
||||||
|
// Access limitations
|
||||||
|
if (tool.type === 'software' && !isToolHosted(tool) && tool.accessType === 'download') {
|
||||||
|
factors.push('Installation erforderlich - nicht sofort verfügbar ohne Setup');
|
||||||
|
}
|
||||||
|
|
||||||
|
// Cross-validation disagreement
|
||||||
|
const crossValidation = this.calculateCrossValidationScore(tool.name, context);
|
||||||
|
if (crossValidation < 50) {
|
||||||
|
factors.push('Uneinheitliche Bewertung in verschiedenen Analyseschritten - Empfehlung nicht eindeutig');
|
||||||
|
}
|
||||||
|
|
||||||
|
return factors.slice(0, 4); // Limit to 4 most important factors
|
||||||
|
}
|
||||||
|
|
||||||
|
// NEW: Identify specific strength indicators
|
||||||
|
private identifySpecificStrengthIndicators(tool: any, context: AnalysisContext, confidence: number): string[] {
|
||||||
|
const indicators: string[] = [];
|
||||||
|
|
||||||
|
// High confidence overall
|
||||||
|
if (confidence >= this.confidenceConfig.highThreshold) {
|
||||||
|
indicators.push('Hohe Gesamtbewertung durch mehrfache Validierung');
|
||||||
|
}
|
||||||
|
|
||||||
|
// High semantic similarity
|
||||||
|
const similarity = context.embeddingsSimilarities.get(tool.name) || 0.5;
|
||||||
|
if (similarity >= 0.7) {
|
||||||
|
indicators.push('Sehr gute semantische Übereinstimmung mit Ihrer Anfrage');
|
||||||
|
}
|
||||||
|
|
||||||
|
// Strong cross-validation
|
||||||
|
const crossValidation = this.calculateCrossValidationScore(tool.name, context);
|
||||||
|
if (crossValidation >= 80) {
|
||||||
|
indicators.push('Konsistente Empfehlung über verschiedene Analyseschritte hinweg');
|
||||||
|
}
|
||||||
|
|
||||||
|
// Quality indicators
|
||||||
|
if (tool.knowledgebase === true) {
|
||||||
|
indicators.push('Umfassende Dokumentation und Wissensbasis verfügbar');
|
||||||
|
}
|
||||||
|
|
||||||
|
if (isToolHosted(tool)) {
|
||||||
|
indicators.push('Sofort verfügbar über gehostete Lösung - kein Setup erforderlich');
|
||||||
|
}
|
||||||
|
|
||||||
|
// Skill level match
|
||||||
|
if (tool.skillLevel === 'intermediate' || tool.skillLevel === 'advanced') {
|
||||||
|
indicators.push('Ausgewogenes Verhältnis zwischen Funktionalität und Benutzerfreundlichkeit');
|
||||||
|
}
|
||||||
|
|
||||||
|
// Method alignment
|
||||||
|
if (tool.type === 'method' && /methodik|vorgehen|prozess|ansatz/i.test(context.userQuery)) {
|
||||||
|
indicators.push('Methodischer Ansatz passt zu Ihrer prozeduralen Anfrage');
|
||||||
|
}
|
||||||
|
|
||||||
|
return indicators.slice(0, 4); // Limit to 4 most important indicators
|
||||||
|
}
|
||||||
|
|
||||||
private async analyzeScenario(context: AnalysisContext): Promise<MicroTaskResult> {
|
private async analyzeScenario(context: AnalysisContext): Promise<MicroTaskResult> {
|
||||||
const isWorkflow = context.mode === 'workflow';
|
const isWorkflow = context.mode === 'workflow';
|
||||||
const prompt = getPrompt('scenarioAnalysis', isWorkflow, context.userQuery);
|
const prompt = getPrompt('scenarioAnalysis', isWorkflow, context.userQuery);
|
||||||
@ -833,27 +1023,49 @@ ${JSON.stringify(conceptsToSend, null, 2)}`;
|
|||||||
if (result.success) {
|
if (result.success) {
|
||||||
const evaluation = this.safeParseJSON(result.content, {
|
const evaluation = this.safeParseJSON(result.content, {
|
||||||
suitability_score: 'medium',
|
suitability_score: 'medium',
|
||||||
|
task_relevance: '',
|
||||||
detailed_explanation: 'Evaluation failed',
|
detailed_explanation: 'Evaluation failed',
|
||||||
implementation_approach: '',
|
implementation_approach: '',
|
||||||
pros: [],
|
pros: [],
|
||||||
cons: [],
|
cons: [],
|
||||||
|
limitations: [],
|
||||||
alternatives: ''
|
alternatives: ''
|
||||||
});
|
});
|
||||||
|
|
||||||
|
// Debug logging to see what we're getting
|
||||||
|
console.log(`[AI PIPELINE] Tool ${tool.name} evaluation:`, {
|
||||||
|
taskRelevance: evaluation.task_relevance,
|
||||||
|
suitabilityScore: evaluation.suitability_score,
|
||||||
|
limitationsCount: evaluation.limitations?.length || 0
|
||||||
|
});
|
||||||
|
|
||||||
|
// Ensure task_relevance is a number
|
||||||
|
const taskRelevance = typeof evaluation.task_relevance === 'number' ?
|
||||||
|
evaluation.task_relevance :
|
||||||
|
parseInt(String(evaluation.task_relevance)) || 70;
|
||||||
|
|
||||||
|
// Store enhanced evaluation data
|
||||||
this.addToolToSelection(context, {
|
this.addToolToSelection(context, {
|
||||||
...tool,
|
...tool,
|
||||||
evaluation: {
|
evaluation: {
|
||||||
...evaluation,
|
...evaluation,
|
||||||
|
task_relevance: taskRelevance, // Ensure it's stored as number
|
||||||
rank
|
rank
|
||||||
}
|
}
|
||||||
}, 'evaluation', evaluation.suitability_score);
|
}, 'evaluation', evaluation.suitability_score, evaluation.detailed_explanation,
|
||||||
|
taskRelevance, evaluation.limitations);
|
||||||
|
|
||||||
this.addAuditEntry(context, 'micro-task', 'tool-evaluation',
|
this.addAuditEntry(context, 'micro-task', 'tool-evaluation',
|
||||||
{ toolName: tool.name, rank },
|
{ toolName: tool.name, rank },
|
||||||
{ suitabilityScore: evaluation.suitability_score, hasExplanation: !!evaluation.detailed_explanation },
|
{
|
||||||
|
suitabilityScore: evaluation.suitability_score,
|
||||||
|
taskRelevance: taskRelevance, // Use the cleaned number
|
||||||
|
hasExplanation: !!evaluation.detailed_explanation,
|
||||||
|
limitationsIdentified: evaluation.limitations?.length || 0
|
||||||
|
},
|
||||||
evaluation.suitability_score === 'high' ? 85 : evaluation.suitability_score === 'medium' ? 70 : 50,
|
evaluation.suitability_score === 'high' ? 85 : evaluation.suitability_score === 'medium' ? 70 : 50,
|
||||||
Date.now() - result.processingTimeMs,
|
Date.now() - result.processingTimeMs,
|
||||||
{ toolType: tool.type }
|
{ toolType: tool.type, taskRelevanceScore: taskRelevance }
|
||||||
);
|
);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -963,28 +1175,31 @@ ${JSON.stringify(conceptsToSend, null, 2)}`;
|
|||||||
|
|
||||||
async processQuery(userQuery: string, mode: string): Promise<AnalysisResult> {
|
async processQuery(userQuery: string, mode: string): Promise<AnalysisResult> {
|
||||||
const startTime = Date.now();
|
const startTime = Date.now();
|
||||||
let completedTasks = 0;
|
let completeTasks = 0;
|
||||||
let failedTasks = 0;
|
let failedTasks = 0;
|
||||||
|
|
||||||
this.tempAuditEntries = [];
|
this.tempAuditEntries = [];
|
||||||
|
|
||||||
console.log(`[AI PIPELINE] Starting ${mode} query processing with context continuity and audit trail`);
|
console.log(`[AI PIPELINE] Starting ${mode} query processing with enhanced confidence scoring`);
|
||||||
|
|
||||||
try {
|
try {
|
||||||
const toolsData = await getCompressedToolsDataForAI();
|
const toolsData = await getCompressedToolsDataForAI();
|
||||||
const filteredData = await this.getIntelligentCandidates(userQuery, toolsData, mode);
|
|
||||||
|
|
||||||
const context: AnalysisContext = {
|
const context: AnalysisContext = {
|
||||||
userQuery,
|
userQuery,
|
||||||
mode,
|
mode,
|
||||||
filteredData,
|
filteredData: {}, // Will be populated by getIntelligentCandidates
|
||||||
contextHistory: [],
|
contextHistory: [],
|
||||||
maxContextLength: this.maxContextTokens,
|
maxContextLength: this.maxContextTokens,
|
||||||
currentContextLength: 0,
|
currentContextLength: 0,
|
||||||
seenToolNames: new Set<string>(),
|
seenToolNames: new Set<string>(),
|
||||||
auditTrail: []
|
auditTrail: [],
|
||||||
|
embeddingsSimilarities: new Map<string, number>()
|
||||||
};
|
};
|
||||||
|
|
||||||
|
const filteredData = await this.getIntelligentCandidates(userQuery, toolsData, mode, context);
|
||||||
|
context.filteredData = filteredData;
|
||||||
|
|
||||||
this.mergeTemporaryAuditEntries(context);
|
this.mergeTemporaryAuditEntries(context);
|
||||||
|
|
||||||
console.log(`[AI PIPELINE] Starting micro-tasks with ${filteredData.tools.length} tools visible`);
|
console.log(`[AI PIPELINE] Starting micro-tasks with ${filteredData.tools.length} tools visible`);
|
||||||
@ -994,58 +1209,54 @@ ${JSON.stringify(conceptsToSend, null, 2)}`;
|
|||||||
{ candidateTools: filteredData.tools.length, candidateConcepts: filteredData.concepts.length },
|
{ candidateTools: filteredData.tools.length, candidateConcepts: filteredData.concepts.length },
|
||||||
90,
|
90,
|
||||||
startTime,
|
startTime,
|
||||||
{ auditEnabled: this.auditConfig.enabled }
|
{ auditEnabled: this.auditConfig.enabled, confidenceScoringEnabled: true }
|
||||||
);
|
);
|
||||||
|
|
||||||
// MICRO-TASK SEQUENCE
|
// MICRO-TASK SEQUENCE WITH ENHANCED CONFIDENCE TRACKING
|
||||||
|
|
||||||
// Task 1: Scenario/Problem Analysis
|
|
||||||
const analysisResult = await this.analyzeScenario(context);
|
const analysisResult = await this.analyzeScenario(context);
|
||||||
if (analysisResult.success) completedTasks++; else failedTasks++;
|
if (analysisResult.success) completeTasks++; else failedTasks++;
|
||||||
await this.delay(this.microTaskDelay);
|
await this.delay(this.microTaskDelay);
|
||||||
|
|
||||||
// Task 2: Investigation/Solution Approach
|
|
||||||
const approachResult = await this.generateApproach(context);
|
const approachResult = await this.generateApproach(context);
|
||||||
if (approachResult.success) completedTasks++; else failedTasks++;
|
if (approachResult.success) completeTasks++; else failedTasks++;
|
||||||
await this.delay(this.microTaskDelay);
|
await this.delay(this.microTaskDelay);
|
||||||
|
|
||||||
// Task 3: Critical Considerations
|
|
||||||
const considerationsResult = await this.generateCriticalConsiderations(context);
|
const considerationsResult = await this.generateCriticalConsiderations(context);
|
||||||
if (considerationsResult.success) completedTasks++; else failedTasks++;
|
if (considerationsResult.success) completeTasks++; else failedTasks++;
|
||||||
await this.delay(this.microTaskDelay);
|
await this.delay(this.microTaskDelay);
|
||||||
|
|
||||||
// Task 4: Tool Selection/Evaluation (mode-dependent)
|
|
||||||
if (mode === 'workflow') {
|
if (mode === 'workflow') {
|
||||||
const phases = toolsData.phases || [];
|
const phases = toolsData.phases || [];
|
||||||
for (const phase of phases) {
|
for (const phase of phases) {
|
||||||
const toolSelectionResult = await this.selectToolsForPhase(context, phase);
|
const toolSelectionResult = await this.selectToolsForPhase(context, phase);
|
||||||
if (toolSelectionResult.success) completedTasks++; else failedTasks++;
|
if (toolSelectionResult.success) completeTasks++; else failedTasks++;
|
||||||
await this.delay(this.microTaskDelay);
|
await this.delay(this.microTaskDelay);
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
const topTools = filteredData.tools.slice(0, 3);
|
const topTools = filteredData.tools.slice(0, 3);
|
||||||
for (let i = 0; i < topTools.length; i++) {
|
for (let i = 0; i < topTools.length; i++) {
|
||||||
const evaluationResult = await this.evaluateSpecificTool(context, topTools[i], i + 1);
|
const evaluationResult = await this.evaluateSpecificTool(context, topTools[i], i + 1);
|
||||||
if (evaluationResult.success) completedTasks++; else failedTasks++;
|
if (evaluationResult.success) completeTasks++; else failedTasks++;
|
||||||
await this.delay(this.microTaskDelay);
|
await this.delay(this.microTaskDelay);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
const knowledgeResult = await this.selectBackgroundKnowledge(context);
|
const knowledgeResult = await this.selectBackgroundKnowledge(context);
|
||||||
if (knowledgeResult.success) completedTasks++; else failedTasks++;
|
if (knowledgeResult.success) completeTasks++; else failedTasks++;
|
||||||
await this.delay(this.microTaskDelay);
|
await this.delay(this.microTaskDelay);
|
||||||
|
|
||||||
const finalResult = await this.generateFinalRecommendations(context);
|
const finalResult = await this.generateFinalRecommendations(context);
|
||||||
if (finalResult.success) completedTasks++; else failedTasks++;
|
if (finalResult.success) completeTasks++; else failedTasks++;
|
||||||
|
|
||||||
const recommendation = this.buildRecommendation(context, mode, finalResult.content);
|
const recommendation = this.buildRecommendation(context, mode, finalResult.content);
|
||||||
|
|
||||||
this.addAuditEntry(context, 'completion', 'pipeline-end',
|
this.addAuditEntry(context, 'completion', 'pipeline-end',
|
||||||
{ completedTasks, failedTasks },
|
{ completedTasks: completeTasks, failedTasks },
|
||||||
{ finalRecommendation: !!recommendation, auditEntriesGenerated: context.auditTrail.length },
|
{ finalRecommendation: !!recommendation, auditEntriesGenerated: context.auditTrail.length },
|
||||||
completedTasks > failedTasks ? 85 : 60,
|
completeTasks > failedTasks ? 85 : 60,
|
||||||
startTime,
|
startTime,
|
||||||
{ totalProcessingTimeMs: Date.now() - startTime }
|
{ totalProcessingTimeMs: Date.now() - startTime, confidenceScoresGenerated: context.selectedTools?.length || 0 }
|
||||||
);
|
);
|
||||||
|
|
||||||
const processingStats = {
|
const processingStats = {
|
||||||
@ -1054,13 +1265,13 @@ ${JSON.stringify(conceptsToSend, null, 2)}`;
|
|||||||
finalSelectedItems: (context.selectedTools?.length || 0) +
|
finalSelectedItems: (context.selectedTools?.length || 0) +
|
||||||
(context.backgroundKnowledge?.length || 0),
|
(context.backgroundKnowledge?.length || 0),
|
||||||
processingTimeMs: Date.now() - startTime,
|
processingTimeMs: Date.now() - startTime,
|
||||||
microTasksCompleted: completedTasks,
|
microTasksCompleted: completeTasks,
|
||||||
microTasksFailed: failedTasks,
|
microTasksFailed: failedTasks,
|
||||||
contextContinuityUsed: true
|
contextContinuityUsed: true
|
||||||
};
|
};
|
||||||
|
|
||||||
console.log(`[AI PIPELINE] Completed: ${completedTasks} tasks, Failed: ${failedTasks} tasks`);
|
console.log(`[AI PIPELINE] Completed: ${completeTasks} tasks, Failed: ${failedTasks} tasks`);
|
||||||
console.log(`[AI PIPELINE] Unique tools selected: ${context.seenToolNames.size}`);
|
console.log(`[AI PIPELINE] Enhanced confidence scores generated: ${context.selectedTools?.length || 0}`);
|
||||||
console.log(`[AI PIPELINE] Audit trail entries: ${context.auditTrail.length}`);
|
console.log(`[AI PIPELINE] Audit trail entries: ${context.auditTrail.length}`);
|
||||||
|
|
||||||
return {
|
return {
|
||||||
@ -1080,128 +1291,6 @@ ${JSON.stringify(conceptsToSend, null, 2)}`;
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
private calculateToolFreshness(tool: any): number {
|
|
||||||
// Base freshness score
|
|
||||||
let freshness = 70; // Default for tools without specific freshness data
|
|
||||||
|
|
||||||
// Boost for tools with knowledge base (more maintained)
|
|
||||||
if (tool.knowledgebase === true) freshness += 20;
|
|
||||||
|
|
||||||
// Boost for hosted tools (actively maintained)
|
|
||||||
if (isToolHosted(tool)) freshness += 15;
|
|
||||||
|
|
||||||
// Slight boost for open source (community maintained)
|
|
||||||
if (tool.license && tool.license !== 'Proprietary') freshness += 5;
|
|
||||||
|
|
||||||
return Math.min(100, freshness);
|
|
||||||
}
|
|
||||||
|
|
||||||
private checkDomainMatch(tool: any, userQuery: string): boolean {
|
|
||||||
if (!tool.domains || tool.domains.length === 0) return false;
|
|
||||||
|
|
||||||
const queryLower = userQuery.toLowerCase();
|
|
||||||
|
|
||||||
// Load domain keywords from environment with fallback
|
|
||||||
const domainKeywordsEnv = process.env.CONFIDENCE_DOMAIN_KEYWORDS ||
|
|
||||||
'incident-response:incident,breach,attack,compromise,response|malware-analysis:malware,virus,trojan,reverse,analysis|network-forensics:network,traffic,packet,pcap,wireshark|mobile-forensics:mobile,android,ios,phone,app|cloud-forensics:cloud,aws,azure,saas,paas';
|
|
||||||
|
|
||||||
const domainKeywords = domainKeywordsEnv.split('|').reduce((acc, pair) => {
|
|
||||||
const [domain, keywords] = pair.split(':');
|
|
||||||
if (domain && keywords) {
|
|
||||||
acc[domain] = keywords.split(',');
|
|
||||||
}
|
|
||||||
return acc;
|
|
||||||
}, {});
|
|
||||||
|
|
||||||
return tool.domains.some(domain => {
|
|
||||||
const keywords = domainKeywords[domain] || [domain.replace('-', ' ')];
|
|
||||||
return keywords.some(keyword => queryLower.includes(keyword));
|
|
||||||
});
|
|
||||||
}
|
|
||||||
|
|
||||||
private getMicroTaskAgreement(toolName: string, context: AnalysisContext): number {
|
|
||||||
// Check how many micro-tasks selected this tool
|
|
||||||
const microTaskEntries = context.auditTrail.filter(entry =>
|
|
||||||
entry.phase === 'micro-task' &&
|
|
||||||
entry.action.includes('selection') &&
|
|
||||||
entry.output &&
|
|
||||||
typeof entry.output === 'object' &&
|
|
||||||
Array.isArray(entry.output.selectedTools) &&
|
|
||||||
entry.output.selectedTools.includes(toolName)
|
|
||||||
);
|
|
||||||
|
|
||||||
const totalMicroTasks = context.auditTrail.filter(entry =>
|
|
||||||
entry.phase === 'micro-task' && entry.action.includes('selection')
|
|
||||||
).length;
|
|
||||||
|
|
||||||
return totalMicroTasks > 0 ? microTaskEntries.length / totalMicroTasks : 0.8; // Default high agreement
|
|
||||||
}
|
|
||||||
|
|
||||||
private getEmbeddingsSimilarity(toolName: string, context: AnalysisContext): number {
|
|
||||||
// Extract similarity from audit trail embeddings entry
|
|
||||||
const embeddingsEntry = context.auditTrail.find(entry =>
|
|
||||||
entry.phase === 'retrieval' && entry.action === 'embeddings-search'
|
|
||||||
);
|
|
||||||
|
|
||||||
if (!embeddingsEntry || !embeddingsEntry.output) return 0.5; // Default medium similarity
|
|
||||||
|
|
||||||
// Look for similarity data in the output (implementation specific)
|
|
||||||
// This would need to be populated during embeddings search
|
|
||||||
return 0.7; // Placeholder - would need actual similarity data from embeddings
|
|
||||||
}
|
|
||||||
|
|
||||||
private identifyUncertaintyFactors(tool: any, context: AnalysisContext, confidence: number): string[] {
|
|
||||||
const factors: string[] = [];
|
|
||||||
|
|
||||||
if (confidence < this.confidenceConfig.mediumThreshold) {
|
|
||||||
factors.push('Low overall confidence - consider manual validation');
|
|
||||||
}
|
|
||||||
|
|
||||||
if (!this.checkDomainMatch(tool, context.userQuery)) {
|
|
||||||
factors.push('Domain mismatch detected - tool may not be specifically designed for this scenario');
|
|
||||||
}
|
|
||||||
|
|
||||||
if (tool.skillLevel === 'expert' && /rapid|quick|urgent|triage/i.test(context.userQuery)) {
|
|
||||||
factors.push('Expert-level tool for rapid scenario - may be overcomplicated');
|
|
||||||
}
|
|
||||||
|
|
||||||
if (tool.type === 'software' && !isToolHosted(tool) && !tool.url) {
|
|
||||||
factors.push('Limited access information - availability uncertain');
|
|
||||||
}
|
|
||||||
|
|
||||||
if (tool.skillLevel === 'novice' && /complex|advanced|deep/i.test(context.userQuery)) {
|
|
||||||
factors.push('Novice-level tool for complex scenario - may lack required capabilities');
|
|
||||||
}
|
|
||||||
|
|
||||||
return factors;
|
|
||||||
}
|
|
||||||
|
|
||||||
private identifyStrengthIndicators(tool: any, context: AnalysisContext, confidence: number): string[] {
|
|
||||||
const indicators: string[] = [];
|
|
||||||
|
|
||||||
if (confidence >= this.confidenceConfig.highThreshold) {
|
|
||||||
indicators.push('High confidence recommendation based on multiple factors');
|
|
||||||
}
|
|
||||||
|
|
||||||
if (this.checkDomainMatch(tool, context.userQuery)) {
|
|
||||||
indicators.push('Strong domain alignment with scenario requirements');
|
|
||||||
}
|
|
||||||
|
|
||||||
if (tool.knowledgebase === true) {
|
|
||||||
indicators.push('Documentation and knowledge base available for guidance');
|
|
||||||
}
|
|
||||||
|
|
||||||
if (isToolHosted(tool)) {
|
|
||||||
indicators.push('Hosted solution available for immediate access');
|
|
||||||
}
|
|
||||||
|
|
||||||
if (tool.type === 'method' && /methodology|approach|process/i.test(context.userQuery)) {
|
|
||||||
indicators.push('Methodological approach matches procedural inquiry');
|
|
||||||
}
|
|
||||||
|
|
||||||
return indicators;
|
|
||||||
}
|
|
||||||
|
|
||||||
private buildRecommendation(context: AnalysisContext, mode: string, finalContent: string): any {
|
private buildRecommendation(context: AnalysisContext, mode: string, finalContent: string): any {
|
||||||
const isWorkflow = mode === 'workflow';
|
const isWorkflow = mode === 'workflow';
|
||||||
|
|
||||||
@ -1218,13 +1307,12 @@ ${JSON.stringify(conceptsToSend, null, 2)}`;
|
|||||||
|
|
||||||
if (isWorkflow) {
|
if (isWorkflow) {
|
||||||
const recommendedToolsWithConfidence = context.selectedTools?.map(st => {
|
const recommendedToolsWithConfidence = context.selectedTools?.map(st => {
|
||||||
// Calculate confidence for each tool
|
// Calculate enhanced confidence for each tool
|
||||||
const confidence = this.calculateRecommendationConfidence(
|
const confidence = this.calculateRecommendationConfidence(
|
||||||
st.tool,
|
st.tool,
|
||||||
this.getEmbeddingsSimilarity(st.tool.name, context),
|
context,
|
||||||
this.checkDomainMatch(st.tool, context.userQuery),
|
st.taskRelevance || 70,
|
||||||
this.getMicroTaskAgreement(st.tool.name, context),
|
st.limitations || []
|
||||||
context
|
|
||||||
);
|
);
|
||||||
|
|
||||||
// Add audit entry for confidence calculation
|
// Add audit entry for confidence calculation
|
||||||
@ -1233,15 +1321,15 @@ ${JSON.stringify(conceptsToSend, null, 2)}`;
|
|||||||
{
|
{
|
||||||
overall: confidence.overall,
|
overall: confidence.overall,
|
||||||
components: {
|
components: {
|
||||||
embeddings: confidence.embeddingsQuality,
|
semantic: confidence.semanticRelevance,
|
||||||
domain: confidence.domainAlignment,
|
suitability: confidence.taskSuitability,
|
||||||
consensus: confidence.consensus,
|
consistency: confidence.methodologicalConsistency,
|
||||||
freshness: confidence.freshness
|
reliability: confidence.toolReliability
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
confidence.overall,
|
confidence.overall,
|
||||||
Date.now(),
|
Date.now(),
|
||||||
{ uncertaintyCount: confidence.uncertaintyFactors.length }
|
{ uncertaintyCount: confidence.uncertaintyFactors.length, strengthCount: confidence.strengthIndicators.length }
|
||||||
);
|
);
|
||||||
|
|
||||||
return {
|
return {
|
||||||
@ -1264,10 +1352,9 @@ ${JSON.stringify(conceptsToSend, null, 2)}`;
|
|||||||
const recommendedToolsWithConfidence = context.selectedTools?.map(st => {
|
const recommendedToolsWithConfidence = context.selectedTools?.map(st => {
|
||||||
const confidence = this.calculateRecommendationConfidence(
|
const confidence = this.calculateRecommendationConfidence(
|
||||||
st.tool,
|
st.tool,
|
||||||
this.getEmbeddingsSimilarity(st.tool.name, context),
|
context,
|
||||||
this.checkDomainMatch(st.tool, context.userQuery),
|
st.taskRelevance || 70,
|
||||||
this.getMicroTaskAgreement(st.tool.name, context),
|
st.limitations || []
|
||||||
context
|
|
||||||
);
|
);
|
||||||
|
|
||||||
this.addAuditEntry(context, 'validation', 'confidence-scoring',
|
this.addAuditEntry(context, 'validation', 'confidence-scoring',
|
||||||
@ -1278,7 +1365,7 @@ ${JSON.stringify(conceptsToSend, null, 2)}`;
|
|||||||
},
|
},
|
||||||
confidence.overall,
|
confidence.overall,
|
||||||
Date.now(),
|
Date.now(),
|
||||||
{ strengthCount: confidence.strengthIndicators.length }
|
{ strengthCount: confidence.strengthIndicators.length, limitationsCount: confidence.uncertaintyFactors.length }
|
||||||
);
|
);
|
||||||
|
|
||||||
return {
|
return {
|
||||||
|
Loading…
x
Reference in New Issue
Block a user