airefactor #19

Merged
mstoeck3 merged 25 commits from airefactor into main 2025-08-17 22:59:31 +00:00
9 changed files with 366 additions and 286 deletions
Showing only changes of commit afbd8d2cd3 - Show all commits

View File

@ -50,7 +50,7 @@ const domainAgnosticSoftware = data['domain-agnostic-software'] || [];
<!-- Input Layout -->
<div class="ai-input-layout">
<div class="ai-textarea-section">
<div class="ai-textarea-section" style="height: 200px">
<textarea
id="ai-query-input"
placeholder="Beschreiben Sie Ihr forensisches Szenario..."
@ -1158,12 +1158,10 @@ class AIQueryInterface {
const lowConfidenceSteps = auditTrail.filter(entry => (entry.confidence || 0) < 60).length;
const mediumConfidenceSteps = auditTrail.length - highConfidenceSteps - lowConfidenceSteps;
// Enhanced metrics
const aiDecisionCount = auditTrail.filter(entry => entry.action === 'ai-decision').length;
const embeddingsUsageCount = auditTrail.filter(entry => entry.metadata?.embeddingsUsed).length;
const toolSelectionCount = auditTrail.filter(entry => entry.action === 'selection-decision').length;
// Phase breakdown
const phaseBreakdown = {};
auditTrail.forEach(entry => {
const phase = entry.phase || 'unknown';
@ -1175,7 +1173,6 @@ class AIQueryInterface {
phaseBreakdown[phase].totalTime += entry.processingTimeMs || 0;
});
// Calculate average confidence per phase
Object.keys(phaseBreakdown).forEach(phase => {
const phaseEntries = auditTrail.filter(entry => entry.phase === phase);
const validEntries = phaseEntries.filter(entry => typeof entry.confidence === 'number');
@ -1191,7 +1188,6 @@ class AIQueryInterface {
const aiTransparency = auditTrail.length > 0 ?
(auditTrail.filter(entry => entry.metadata?.aiPrompt || entry.metadata?.reasoning).length / auditTrail.length) * 100 : 0;
// RESTORED: Intelligent Analysis Quality Assessment
let analysisQuality;
if (avgConfidence >= 85 && lowConfidenceSteps === 0) {
analysisQuality = 'excellent';
@ -1203,7 +1199,6 @@ class AIQueryInterface {
analysisQuality = 'poor';
}
// RESTORED: Intelligent Insights Generation
const keyInsights = [];
const embeddingsUsed = auditTrail.some(e => e.metadata?.embeddingsUsed);
if (embeddingsUsed) {
@ -1226,7 +1221,6 @@ class AIQueryInterface {
keyInsights.push('Mehrheit der Analyseschritte mit hoher Sicherheit');
}
// RESTORED: Automatic Issue Detection (excluding processing time warnings)
const potentialIssues = [];
if (lowConfidenceSteps > 2) {
potentialIssues.push(`${lowConfidenceSteps} Analyseschritte mit niedriger Konfidenz`);

View File

@ -36,6 +36,11 @@ AUSWAHLSTRATEGIE:
- Lieber weniger perfekte Items als viele mittelmäßige
- Jedes Item muss begründbar sein
4. **TASK RELEVANCE REALISM**
- Gib realistische Bewertungen (50-85% typisch)
- Vermeide übertriebene 90-100% Scores
- Nur bei perfekter Übereinstimmung >85%
AUSWAHLREGELN:
- Wähle ${mode === 'workflow' ? '15-25' : '4-10'} Items total, max ${maxSelectedItems}
- BEIDE Arrays füllen: selectedTools UND selectedConcepts
@ -59,7 +64,13 @@ ${JSON.stringify(toolsToSend, null, 2)}
VERFÜGBARE KONZEPTE (${conceptsToSend.length} Items - theoretisches Wissen):
${JSON.stringify(conceptsToSend, null, 2)}
WICHTIGER HINWEIS: Wähle sowohl aus TOOLS als auch aus KONZEPTEN aus! Konzepte sind essentiell für methodische Fundierung.`;
WICHTIGER HINWEIS: Wähle sowohl aus TOOLS als auch aus KONZEPTEN aus! Konzepte sind essentiell für methodische Fundierung.
TASK RELEVANCE GUIDELINES:
- 50-65%: Grundlegend relevant, aber nicht optimal
- 66-75%: Gut geeignet für die Aufgabe
- 76-85%: Sehr gut geeignet, klare Vorteile
- 86-100%: NUR für perfekte Übereinstimmung verwenden`;
},
scenarioAnalysis: (isWorkflow: boolean, userQuery: string) => {
@ -148,13 +159,19 @@ AUSWAHLREGELN FÜR PHASE "${phase.name}":
3. Mindestens 1 Methode wenn verfügbar, Rest Software-Tools
4. Begründe WARUM jedes Item für diese Phase optimal ist
TASK RELEVANCE GUIDELINES:
- 60-70%: Grundlegend für diese Phase geeignet
- 71-80%: Gut geeignet, klare Phasenrelevanz
- 81-90%: Sehr gut geeignet, optimal für Phase
- 91-100%: NUR für perfekte Phasenübereinstimmung
WICHTIG: Verwende EXAKT die Namen wie oben aufgelistet (ohne Präfixe wie M1./T2.)!
ANTWORT AUSSCHLIESSLICH IM JSON-FORMAT OHNE JEGLICHEN TEXT AUSSERHALB:
[
{
"toolName": "Exakter Name aus der Liste oben",
"taskRelevance": 85,
"taskRelevance": 75,
"justification": "Detaillierte Begründung (60-80 Wörter) warum optimal für ${phase.name} - erkläre Anwendung, Vorteile und spezifische Relevanz",
"limitations": ["Mögliche Einschränkung für diese Phase"]
}
@ -266,6 +283,7 @@ AUSWAHLREGELN FÜR NACHERGÄNZUNG:
1. Wähle 1-2 BESTE Methoden/Tools die die ${phase.name}-Phase optimal ergänzen
2. Methoden/Tools müssen für die ursprüngliche Anfrage relevant sein
3. Ergänzen, nicht ersetzen - erweitere die zu spezifische Erstauswahl
4. Realistische Task Relevance (70-85% typisch für Nachergänzungen)
ANTWORT AUSSCHLIESSLICH IM JSON-FORMAT:
{

View File

@ -1,11 +1,11 @@
// src/utils/aiPipeline.ts - Enhanced with comprehensive audit logging
// src/utils/aiPipeline.ts - Enhanced with comprehensive audit logging and restored sophisticated logic
import { getCompressedToolsDataForAI, getDataVersion } from './dataService.js';
import { aiService } from './aiService.js';
import { toolSelector, type SelectionContext } from './toolSelector.js';
import { confidenceScoring, type AnalysisContext } from './confidenceScoring.js';
import { embeddingsService } from './embeddings.js';
import { auditService, type AuditEntry } from './auditService.js';
import { JSONParser } from './jsonUtils.js'; // FIXED: Use centralized JSON parsing
import { JSONParser } from './jsonUtils.js';
import { getPrompt } from '../config/prompts.js';
import 'dotenv/config';
@ -13,6 +13,11 @@ interface PipelineConfig {
microTaskDelay: number;
maxContextTokens: number;
maxPromptTokens: number;
taskRelevanceModeration: {
maxInitialScore: number;
maxWithPhaseBonus: number;
moderationThreshold: number;
};
}
interface MicroTaskResult {
@ -40,6 +45,10 @@ interface AnalysisResult {
contextContinuityUsed: boolean;
totalAITokensUsed: number;
auditEntriesGenerated: number;
aiModel: string;
toolsDataHash: string;
temperature: number;
maxTokensUsed: number;
};
}
@ -78,10 +87,15 @@ class AIPipeline {
this.config = {
microTaskDelay: parseInt(process.env.AI_MICRO_TASK_DELAY_MS || '500', 10),
maxContextTokens: parseInt(process.env.AI_MAX_CONTEXT_TOKENS || '4000', 10),
maxPromptTokens: parseInt(process.env.AI_MAX_PROMPT_TOKENS || '1500', 10)
maxPromptTokens: parseInt(process.env.AI_MAX_PROMPT_TOKENS || '1500', 10),
taskRelevanceModeration: {
maxInitialScore: 85,
maxWithPhaseBonus: 95,
moderationThreshold: 80
}
};
console.log('[AI-PIPELINE] Initialized orchestration pipeline');
console.log('[AI-PIPELINE] Initialized orchestration pipeline with enhanced logic');
}
async processQuery(userQuery: string, mode: string): Promise<AnalysisResult> {
@ -92,7 +106,6 @@ class AIPipeline {
console.log('[AI-PIPELINE] Starting', mode, 'analysis pipeline');
// Initialize audit trail
auditService.clearAuditTrail();
try {
@ -111,7 +124,6 @@ class AIPipeline {
embeddingsSimilarities: new Map<string, number>()
};
// AUDIT: Pipeline initialization
auditService.addEntry(
'initialization',
'pipeline-start',
@ -132,17 +144,15 @@ class AIPipeline {
toolsDataHash,
aiModel: aiConfig.model,
embeddingsUsed: embeddingsService.isEnabled(),
pipelineVersion: '2.0-enhanced'
pipelineVersion: '2.1-enhanced'
}
);
// Phase 1: Get intelligent tool candidates with enhanced logging
console.log('[AI-PIPELINE] Phase 1: Tool candidate selection');
const candidateSelectionStart = Date.now();
const candidateData = await toolSelector.getIntelligentCandidates(userQuery, toolsData, mode, context);
// AUDIT: Tool candidate selection
auditService.addToolSelection(
candidateData.tools.map(t => t.name),
toolsData.tools.map(t => t.name),
@ -159,7 +169,6 @@ class AIPipeline {
context.filteredData = candidateData;
// Phase 2: Contextual analysis micro-tasks with enhanced logging
console.log('[AI-PIPELINE] Phase 2: Contextual analysis');
const analysisResult = await this.analyzeScenario(context, startTime);
@ -177,7 +186,6 @@ class AIPipeline {
this.trackTokenUsage(considerationsResult.aiUsage);
await this.delay(this.config.microTaskDelay);
// Phase 3: Tool-specific analysis with enhanced logging
console.log('[AI-PIPELINE] Phase 3: Tool-specific analysis');
if (mode === 'workflow') {
@ -190,7 +198,6 @@ class AIPipeline {
failedTasks = toolResults.failed;
}
// Phase 4: Knowledge and finalization with enhanced logging
console.log('[AI-PIPELINE] Phase 4: Knowledge synthesis');
const knowledgeResult = await this.selectBackgroundKnowledge(context, startTime);
@ -202,10 +209,8 @@ class AIPipeline {
if (finalResult.success) completedTasks++; else failedTasks++;
this.trackTokenUsage(finalResult.aiUsage);
// Build final recommendation
const recommendation = this.buildRecommendation(context, mode, finalResult.content);
// AUDIT: Pipeline completion
auditService.addEntry(
'completion',
'pipeline-end',
@ -235,7 +240,11 @@ class AIPipeline {
microTasksFailed: failedTasks,
contextContinuityUsed: true,
totalAITokensUsed: this.totalTokensUsed,
auditEntriesGenerated: auditService.getCurrentAuditTrail().length
auditEntriesGenerated: auditService.getCurrentAuditTrail().length,
aiModel: aiConfig.model,
toolsDataHash,
temperature: 0.3,
maxTokensUsed: 2500
};
console.log('[AI-PIPELINE] Pipeline completed successfully:', {
@ -248,13 +257,13 @@ class AIPipeline {
auditEntries: processingStats.auditEntriesGenerated
});
// Finalize audit trail
const finalAuditTrail = auditService.finalizeAuditTrail();
return {
recommendation: {
...recommendation,
auditTrail: auditService.isEnabled() ? finalAuditTrail : undefined
auditTrail: auditService.isEnabled() ? finalAuditTrail : undefined,
processingStats
},
processingStats
};
@ -262,7 +271,6 @@ class AIPipeline {
} catch (error) {
console.error('[AI-PIPELINE] Pipeline failed:', error);
// AUDIT: Pipeline failure
auditService.addEntry(
'error',
'pipeline-failure',
@ -286,7 +294,6 @@ class AIPipeline {
): Promise<{ completed: number; failed: number }> {
const phases = toolsData.phases || [];
// Select tools for each phase with enhanced logging
for (const phase of phases) {
const phaseStart = Date.now();
const phaseTools = context.filteredData.tools.filter((tool: any) =>
@ -295,7 +302,6 @@ class AIPipeline {
const selections = await toolSelector.selectToolsForPhase(context.userQuery, phase, phaseTools, context);
// AUDIT: Phase tool selection
auditService.addEntry(
'workflow-phase',
'phase-tool-selection',
@ -321,21 +327,23 @@ class AIPipeline {
selections.forEach((sel: any) => {
const tool = phaseTools.find((t: any) => t && t.name === sel.toolName);
if (tool) {
const priority = this.derivePriorityFromScore(sel.taskRelevance);
this.addToolToSelection(context, tool, phase.id, priority, sel.justification, sel.taskRelevance, sel.limitations);
const moderatedTaskRelevance = this.moderateTaskRelevance(sel.taskRelevance);
const priority = this.derivePriorityFromScore(moderatedTaskRelevance);
this.addToolToSelection(context, tool, phase.id, priority, sel.justification, moderatedTaskRelevance, sel.limitations);
// AUDIT: Individual tool selection reasoning
auditService.addEntry(
'tool-reasoning',
'tool-added-to-phase',
{ toolName: tool.name, phaseId: phase.id, taskRelevance: sel.taskRelevance },
{ toolName: tool.name, phaseId: phase.id, originalTaskRelevance: sel.taskRelevance, moderatedTaskRelevance },
{ justification: sel.justification, limitations: sel.limitations },
sel.taskRelevance || 70,
moderatedTaskRelevance || 70,
phaseStart,
{
toolType: tool.type,
priority,
selectionReasoning: sel.justification
selectionReasoning: sel.justification,
moderationApplied: sel.taskRelevance !== moderatedTaskRelevance
}
);
}
@ -345,8 +353,9 @@ class AIPipeline {
await this.delay(this.config.microTaskDelay);
}
// Complete underrepresented phases with enhanced logging
const completionResult = await this.completeUnderrepresentedPhases(context, toolsData, pipelineStart);
completedTasks += completionResult.completed;
failedTasks += completionResult.failed;
return { completed: completedTasks, failed: failedTasks };
}
@ -369,6 +378,267 @@ class AIPipeline {
return { completed: completedTasks, failed: failedTasks };
}
private async completeUnderrepresentedPhases(
context: PipelineContext,
toolsData: any,
pipelineStart: number
): Promise<{ completed: number; failed: number }> {
const phases = toolsData.phases || [];
const selectedPhases = new Map<string, number>();
let completedTasks = 0;
let failedTasks = 0;
context.selectedTools?.forEach((st: any) => {
const count = selectedPhases.get(st.phase) || 0;
selectedPhases.set(st.phase, count + 1);
});
const underrepresentedPhases = phases.filter((phase: any) => {
const count = selectedPhases.get(phase.id) || 0;
return count <= 1;
});
if (underrepresentedPhases.length === 0) {
console.log('[AI-PIPELINE] All phases adequately represented');
return { completed: 0, failed: 0 };
}
console.log('[AI-PIPELINE] Completing underrepresented phases:', underrepresentedPhases.map((p: any) => p.id).join(', '));
auditService.addEntry(
'phase-completion',
'underrepresented-phases-detected',
{
underrepresentedPhases: underrepresentedPhases.map(p => p.id),
currentPhaseDistribution: Array.from(selectedPhases.entries())
},
{
phasesToComplete: underrepresentedPhases.length,
completionStrategy: 'semantic-search-with-ai-reasoning'
},
70,
pipelineStart,
{
totalPhases: phases.length,
adequatelyRepresented: phases.length - underrepresentedPhases.length,
completionMethod: 'sophisticated-ai-reasoning'
}
);
for (const phase of underrepresentedPhases) {
const result = await this.completePhaseWithSemanticSearchAndAI(context, phase, toolsData, pipelineStart);
if (result.success) completedTasks++; else failedTasks++;
await this.delay(this.config.microTaskDelay);
}
return { completed: completedTasks, failed: failedTasks };
}
private async completePhaseWithSemanticSearchAndAI(
context: PipelineContext,
phase: any,
toolsData: any,
pipelineStart: number
): Promise<MicroTaskResult> {
const phaseStart = Date.now();
const phaseQuery = `forensic ${phase.name.toLowerCase()} tools methods`;
console.log('[AI-PIPELINE] Phase completion for:', phase.id);
try {
const phaseResults = await embeddingsService.findSimilar(phaseQuery, 20, 0.2);
auditService.addEmbeddingsSearch(
phaseQuery,
phaseResults,
0.2,
phaseStart,
{
phaseId: phase.id,
phaseName: phase.name,
completionPurpose: 'underrepresented-phase-enhancement'
}
);
if (phaseResults.length === 0) {
console.log('[AI-PIPELINE] No semantic results for phase:', phase.id);
return {
taskType: 'phase-completion',
content: '',
processingTimeMs: Date.now() - phaseStart,
success: true
};
}
const toolsMap = new Map(toolsData.tools.map((tool: any) => [tool.name, tool]));
const conceptsMap = new Map(toolsData.concepts.map((concept: any) => [concept.name, concept]));
const phaseTools = phaseResults
.filter((result: any) => result.type === 'tool')
.map((result: any) => toolsMap.get(result.name))
.filter((tool: any): tool is NonNullable<any> =>
tool !== undefined &&
tool !== null &&
tool.phases &&
Array.isArray(tool.phases) &&
tool.phases.includes(phase.id) &&
!context.seenToolNames.has(tool.name)
)
.slice(0, 5);
const phaseConcepts = phaseResults
.filter((result: any) => result.type === 'concept')
.map((result: any) => conceptsMap.get(result.name))
.filter((concept: any): concept is NonNullable<any> => concept !== undefined && concept !== null)
.slice(0, 2);
if (phaseTools.length === 0) {
console.log('[AI-PIPELINE] No suitable tools for phase completion:', phase.id);
return {
taskType: 'phase-completion',
content: '',
processingTimeMs: Date.now() - phaseStart,
success: true
};
}
const selectionPrompt = getPrompt('generatePhaseCompletionPrompt', context.userQuery, phase, phaseTools, phaseConcepts);
const selectionResult = await this.callMicroTaskAI(selectionPrompt, context, 800, 'phase-completion-selection');
if (!selectionResult.success) {
console.error('[AI-PIPELINE] Phase completion selection failed for:', phase.id);
return {
taskType: 'phase-completion',
content: '',
processingTimeMs: Date.now() - phaseStart,
success: false,
error: 'Selection micro-task failed'
};
}
const selection = JSONParser.safeParseJSON(selectionResult.content, {
selectedTools: [],
selectedConcepts: [],
completionReasoning: ''
});
const validTools = selection.selectedTools
.map((name: string) => phaseTools.find((t: any) => t && t.name === name))
.filter((tool: any): tool is NonNullable<any> => tool !== undefined && tool !== null)
.slice(0, 2);
if (validTools.length === 0) {
console.log('[AI-PIPELINE] No valid tools selected for phase completion:', phase.id);
return {
taskType: 'phase-completion',
content: selection.completionReasoning || '',
processingTimeMs: Date.now() - phaseStart,
success: true
};
}
for (const tool of validTools) {
console.log('[AI-PIPELINE] Generating AI reasoning for phase completion tool:', tool.name);
const reasoningPrompt = getPrompt(
'phaseCompletionReasoning',
context.userQuery,
phase,
tool.name,
tool,
selection.completionReasoning || 'Nachergänzung zur Vervollständigung der Phasenabdeckung'
);
const reasoningResult = await this.callMicroTaskAI(reasoningPrompt, context, 400, 'phase-completion-reasoning');
let detailedJustification: string;
let moderatedTaskRelevance = 75;
if (reasoningResult.success && reasoningResult.content.trim()) {
detailedJustification = reasoningResult.content.trim();
moderatedTaskRelevance = this.moderateTaskRelevance(80);
} else {
detailedJustification = `Nachträglich hinzugefügt zur Vervollständigung der ${phase.name}-Phase. Die ursprüngliche KI-Auswahl war zu spezifisch und hat wichtige Tools für diese Phase übersehen.`;
moderatedTaskRelevance = this.moderateTaskRelevance(75);
}
this.addToolToSelection(
context,
tool,
phase.id,
'medium',
detailedJustification,
moderatedTaskRelevance,
['Nachträgliche Ergänzung via semantische Phasensuche mit KI-Bewertung']
);
auditService.addPhaseCompletion(
phase.id,
[tool.name],
detailedJustification,
phaseStart,
{
toolName: tool.name,
toolType: tool.type,
semanticSimilarity: phaseResults.find(r => r.name === tool.name)?.similarity,
completionReason: 'underrepresented-phase',
originalSelectionMissed: true,
aiReasoningUsed: reasoningResult.success,
moderatedTaskRelevance
}
);
console.log('[AI-PIPELINE] Added phase completion tool with AI reasoning:', tool.name);
}
return {
taskType: 'phase-completion',
content: selection.completionReasoning || '',
processingTimeMs: Date.now() - phaseStart,
success: true
};
} catch (error) {
console.error('[AI-PIPELINE] Phase completion failed for:', phase.id, error);
auditService.addEntry(
'phase-completion',
'completion-failed',
{ phaseId: phase.id, error: error.message },
{ success: false },
20,
phaseStart,
{
errorType: error.constructor.name,
phaseId: phase.id
}
);
return {
taskType: 'phase-completion',
content: '',
processingTimeMs: Date.now() - phaseStart,
success: false,
error: error.message
};
}
}
private moderateTaskRelevance(taskRelevance: number): number {
if (typeof taskRelevance !== 'number') {
return 70;
}
let moderated = Math.min(taskRelevance, this.config.taskRelevanceModeration.maxInitialScore);
if (moderated > this.config.taskRelevanceModeration.moderationThreshold) {
const excess = moderated - this.config.taskRelevanceModeration.moderationThreshold;
moderated = this.config.taskRelevanceModeration.moderationThreshold + (excess * 0.7);
}
return Math.round(Math.min(moderated, this.config.taskRelevanceModeration.maxInitialScore));
}
private async analyzeScenario(context: PipelineContext, pipelineStart: number): Promise<MicroTaskResult> {
console.log('[AI-PIPELINE] Micro-task: Scenario analysis');
const taskStart = Date.now();
@ -386,7 +656,6 @@ class AIPipeline {
this.addToContextHistory(context, `${isWorkflow ? 'Szenario' : 'Problem'}-Analyse: ${result.content.slice(0, 200)}...`);
// AUDIT: Scenario analysis
auditService.addAIDecision(
'contextual-analysis',
prompt,
@ -418,7 +687,6 @@ class AIPipeline {
context.investigationApproach = result.content;
this.addToContextHistory(context, `${isWorkflow ? 'Untersuchungs' : 'Lösungs'}ansatz: ${result.content.slice(0, 200)}...`);
// AUDIT: Investigation approach
auditService.addAIDecision(
'contextual-analysis',
prompt,
@ -451,7 +719,6 @@ class AIPipeline {
context.criticalConsiderations = result.content;
this.addToContextHistory(context, `Kritische Überlegungen: ${result.content.slice(0, 200)}...`);
// AUDIT: Critical considerations
auditService.addAIDecision(
'contextual-analysis',
prompt,
@ -479,14 +746,14 @@ class AIPipeline {
console.log('[AI-PIPELINE] Micro-task: Tool evaluation for:', tool.name);
const taskStart = Date.now();
const existingSelection = context.selectedTools?.find((st: any) => st.tool && st.tool.name === tool.name);
const taskRelevance = existingSelection?.taskRelevance || 70;
const priority = this.derivePriorityFromScore(taskRelevance);
const originalTaskRelevance = existingSelection?.taskRelevance || 70;
const moderatedTaskRelevance = this.moderateTaskRelevance(originalTaskRelevance);
const priority = this.derivePriorityFromScore(moderatedTaskRelevance);
const prompt = getPrompt('toolEvaluation', context.userQuery, tool, rank, taskRelevance);
const prompt = getPrompt('toolEvaluation', context.userQuery, tool, rank, moderatedTaskRelevance);
const result = await this.callMicroTaskAI(prompt, context, 1000, 'tool-evaluation');
if (result.success) {
// FIXED: Use centralized JSON parsing
const evaluation = JSONParser.safeParseJSON(result.content, {
detailed_explanation: 'Evaluation failed',
implementation_approach: '',
@ -500,16 +767,15 @@ class AIPipeline {
evaluation: {
...evaluation,
rank,
task_relevance: taskRelevance
task_relevance: moderatedTaskRelevance
}
}, 'evaluation', priority, evaluation.detailed_explanation, taskRelevance, evaluation.limitations);
}, 'evaluation', priority, evaluation.detailed_explanation, moderatedTaskRelevance, evaluation.limitations);
// AUDIT: Tool evaluation
auditService.addAIDecision(
'tool-evaluation',
prompt,
result.content,
taskRelevance,
moderatedTaskRelevance,
`Evaluated tool ${tool.name} for ${context.mode} mode`,
taskStart,
{
@ -517,7 +783,9 @@ class AIPipeline {
toolName: tool.name,
toolType: tool.type,
rank,
taskRelevance,
originalTaskRelevance,
moderatedTaskRelevance,
moderationApplied: originalTaskRelevance !== moderatedTaskRelevance,
evaluationParsed: !!evaluation.detailed_explanation,
prosCount: evaluation.pros?.length || 0,
limitationsCount: evaluation.limitations?.length || 0,
@ -548,7 +816,6 @@ class AIPipeline {
const result = await this.callMicroTaskAI(prompt, context, 700, 'background-knowledge');
if (result.success) {
// FIXED: Use centralized JSON parsing
const selections = JSONParser.safeParseJSON(result.content, []);
if (Array.isArray(selections)) {
@ -559,7 +826,6 @@ class AIPipeline {
relevance: sel.relevance
}));
// AUDIT: Background knowledge selection
auditService.addEntry(
'knowledge-synthesis',
'concept-selection',
@ -596,7 +862,6 @@ class AIPipeline {
const result = await this.callMicroTaskAI(prompt, context, 350, 'final-recommendations');
if (result.success) {
// AUDIT: Final recommendations
auditService.addAIDecision(
'synthesis',
prompt,
@ -617,152 +882,6 @@ class AIPipeline {
return result;
}
private async completeUnderrepresentedPhases(context: PipelineContext, toolsData: any, pipelineStart: number): Promise<void> {
const phases = toolsData.phases || [];
const selectedPhases = new Map<string, number>();
context.selectedTools?.forEach((st: any) => {
const count = selectedPhases.get(st.phase) || 0;
selectedPhases.set(st.phase, count + 1);
});
const underrepresentedPhases = phases.filter((phase: any) => {
const count = selectedPhases.get(phase.id) || 0;
return count <= 1;
});
if (underrepresentedPhases.length === 0) {
console.log('[AI-PIPELINE] All phases adequately represented');
return;
}
console.log('[AI-PIPELINE] Completing underrepresented phases:', underrepresentedPhases.map((p: any) => p.id).join(', '));
// AUDIT: Phase completion start
auditService.addEntry(
'phase-completion',
'underrepresented-phases-detected',
{
underrepresentedPhases: underrepresentedPhases.map(p => p.id),
currentPhaseDistribution: Array.from(selectedPhases.entries())
},
{
phasesToComplete: underrepresentedPhases.length,
completionStrategy: 'semantic-search'
},
70,
pipelineStart,
{
totalPhases: phases.length,
adequatelyRepresented: phases.length - underrepresentedPhases.length,
completionMethod: 'semantic-phase-search'
}
);
for (const phase of underrepresentedPhases) {
await this.completePhaseWithSemanticSearch(context, phase, toolsData, pipelineStart);
await this.delay(this.config.microTaskDelay);
}
}
private async completePhaseWithSemanticSearch(context: PipelineContext, phase: any, toolsData: any, pipelineStart: number): Promise<void> {
const phaseStart = Date.now();
const phaseQuery = `forensic ${phase.name.toLowerCase()} tools methods`;
console.log('[AI-PIPELINE] Phase completion for:', phase.id);
try {
const phaseResults = await embeddingsService.findSimilar(phaseQuery, 20, 0.2);
// AUDIT: Embeddings search for phase completion
auditService.addEmbeddingsSearch(
phaseQuery,
phaseResults,
0.2,
phaseStart,
{
phaseId: phase.id,
phaseName: phase.name,
completionPurpose: 'underrepresented-phase-enhancement'
}
);
if (phaseResults.length === 0) {
console.log('[AI-PIPELINE] No semantic results for phase:', phase.id);
return;
}
const toolsMap = new Map(toolsData.tools.map((tool: any) => [tool.name, tool]));
const phaseTools = phaseResults
.filter((result: any) => result.type === 'tool')
.map((result: any) => toolsMap.get(result.name))
.filter((tool: any): tool is NonNullable<any> =>
tool !== undefined &&
tool !== null &&
tool.phases &&
Array.isArray(tool.phases) &&
tool.phases.includes(phase.id) &&
!context.seenToolNames.has(tool.name)
)
.slice(0, 2);
if (phaseTools.length === 0) {
console.log('[AI-PIPELINE] No suitable tools for phase completion:', phase.id);
return;
}
// Add tools with justification and audit each addition
for (const tool of phaseTools) {
const justification = `Nachträglich hinzugefügt zur Vervollständigung der ${phase.name}-Phase. Die ursprüngliche KI-Auswahl war zu spezifisch und hat wichtige Tools für diese Phase übersehen.`;
this.addToolToSelection(
context,
tool,
phase.id,
'medium',
justification,
75,
['Nachträgliche Ergänzung via semantische Phasensuche']
);
// AUDIT: Phase completion tool addition
auditService.addPhaseCompletion(
phase.id,
[tool.name],
justification,
phaseStart,
{
toolName: tool.name,
toolType: tool.type,
semanticSimilarity: phaseResults.find(r => r.name === tool.name)?.similarity,
completionReason: 'underrepresented-phase',
originalSelectionMissed: true
}
);
console.log('[AI-PIPELINE] Added phase completion tool:', tool.name);
}
} catch (error) {
console.error('[AI-PIPELINE] Phase completion failed for:', phase.id, error);
// AUDIT: Phase completion failure
auditService.addEntry(
'phase-completion',
'completion-failed',
{ phaseId: phase.id, error: error.message },
{ success: false },
20,
phaseStart,
{
errorType: error.constructor.name,
phaseId: phase.id
}
);
}
}
private buildRecommendation(context: PipelineContext, mode: string, finalContent: string): any {
const isWorkflow = mode === 'workflow';
@ -795,7 +914,6 @@ class AIPipeline {
st.limitations || []
);
// AUDIT: Confidence calculation for each tool
auditService.addConfidenceCalculation(
st.tool.name,
confidence,
@ -803,7 +921,8 @@ class AIPipeline {
{
phase: st.phase,
priority: st.priority,
toolType: st.tool.type
toolType: st.tool.type,
moderatedTaskRelevance: st.taskRelevance
}
);
@ -839,14 +958,14 @@ class AIPipeline {
st.limitations || []
);
// AUDIT: Confidence calculation for each tool
auditService.addConfidenceCalculation(
st.tool.name,
confidence,
Date.now(),
{
rank: st.tool.evaluation?.rank || 1,
toolType: st.tool.type
toolType: st.tool.type,
moderatedTaskRelevance: st.taskRelevance
}
);
@ -873,7 +992,6 @@ class AIPipeline {
}
}
// Helper methods
private async callMicroTaskAI(
prompt: string,
context: PipelineContext,

View File

@ -83,26 +83,21 @@ export const apiServerError = {
};
export const apiSpecial = {
// JSON parsing error
invalidJSON: (): Response =>
apiError.badRequest('Invalid JSON in request body'),
// Missing required fields
missingRequired: (fields: string[]): Response =>
apiError.badRequest(`Missing required fields: ${fields.join(', ')}`),
// Empty request body
emptyBody: (): Response =>
apiError.badRequest('Request body cannot be empty'),
// File upload responses
uploadSuccess: (data: { url: string; filename: string; size: number; storage: string }): Response =>
apiResponse.created(data),
uploadFailed: (error: string): Response =>
apiServerError.internal(`Upload failed: ${error}`),
// Contribution responses
contributionSuccess: (data: { prUrl?: string; branchName?: string; message: string }): Response =>
apiResponse.created({ success: true, ...data }),
@ -114,7 +109,6 @@ export const apiWithHeaders = {
successWithHeaders: (data: any, headers: Record<string, string>): Response =>
createAPIResponse(data, 200, headers),
// Redirect response
redirect: (location: string, temporary: boolean = true): Response =>
new Response(null, {
status: temporary ? 302 : 301,

View File

@ -101,7 +101,6 @@ class AuditService {
this.activeAuditTrail.push(entry);
// Enforce max entries limit
if (this.activeAuditTrail.length > this.config.maxEntries) {
this.activeAuditTrail.shift();
}
@ -109,7 +108,6 @@ class AuditService {
console.log(`[AUDIT-SERVICE] ${phase}/${action}: ${confidence}% confidence, ${entry.processingTimeMs}ms`);
}
// NEW: Specialized audit methods for forensic transparency
addAIDecision(
phase: string,
aiPrompt: string,
@ -162,24 +160,28 @@ class AuditService {
addPhaseCompletion(
phaseId: string,
toolsAdded: string[],
completionReasoning: string,
addedTools: string[],
reasoning: string,
startTime: number,
metadata: Record<string, any> = {}
): void {
this.addEntry(
'phase-completion',
'phase-enhancement',
{ phaseId, underrepresentedPhase: true },
{ toolsAdded },
75, // Default confidence for phase completion
{
phaseId,
addedTools,
reasoning: reasoning.slice(0, 200)
},
{
toolsAddedCount: addedTools.length,
enhancementMethod: 'semantic-search-with-ai-reasoning'
},
metadata.moderatedTaskRelevance || 75,
startTime,
{
...metadata,
phaseId,
toolsAdded,
completionReasoning,
enhancementType: 'semantic-phase-completion'
phaseCompletionMethod: 'sophisticated-ai-reasoning'
}
);
}
@ -215,25 +217,30 @@ class AuditService {
addConfidenceCalculation(
toolName: string,
confidenceBreakdown: any,
confidence: any,
startTime: number,
metadata: Record<string, any> = {}
): void {
this.addEntry(
'confidence-scoring',
'tool-confidence',
{ toolName },
{ confidenceBreakdown },
confidenceBreakdown.overall || 50,
{
toolName,
confidence: {
overall: confidence.overall,
semantic: confidence.semanticRelevance,
task: confidence.taskSuitability
}
},
{
uncertaintyFactorsCount: confidence.uncertaintyFactors?.length || 0,
strengthIndicatorsCount: confidence.strengthIndicators?.length || 0
},
confidence.overall,
startTime,
{
...metadata,
confidenceFactors: [
...(confidenceBreakdown.strengthIndicators || []),
...(confidenceBreakdown.uncertaintyFactors || [])
],
semanticRelevance: confidenceBreakdown.semanticRelevance,
taskSuitability: confidenceBreakdown.taskSuitability
confidenceCalculation: true
}
);
}
@ -300,7 +307,6 @@ class AuditService {
return { ...this.config };
}
// Statistics and analysis methods (enhanced)
getAuditStatistics(auditTrail: AuditEntry[]): {
totalTime: number;
avgConfidence: number;
@ -346,12 +352,10 @@ class AuditService {
const lowConfidenceSteps = auditTrail.filter(entry => (entry.confidence || 0) < 60).length;
const mediumConfidenceSteps = auditTrail.length - highConfidenceSteps - lowConfidenceSteps;
// Enhanced metrics
const aiDecisionCount = auditTrail.filter(entry => entry.action === 'ai-decision').length;
const embeddingsUsageCount = auditTrail.filter(entry => entry.metadata?.embeddingsUsed).length;
const toolSelectionCount = auditTrail.filter(entry => entry.action === 'selection-decision').length;
// Phase breakdown
const phaseBreakdown: Record<string, { count: number; avgConfidence: number; totalTime: number }> = {};
auditTrail.forEach(entry => {
@ -364,7 +368,6 @@ class AuditService {
phaseBreakdown[phase].totalTime += entry.processingTimeMs || 0;
});
// Calculate average confidence per phase
Object.keys(phaseBreakdown).forEach(phase => {
const phaseEntries = auditTrail.filter(entry => entry.phase === phase);
const validEntries = phaseEntries.filter(entry => typeof entry.confidence === 'number');
@ -425,7 +428,6 @@ class AuditService {
return;
}
// Required fields validation
const requiredFields = ['timestamp', 'phase', 'action'];
requiredFields.forEach(field => {
if (!(field in entry)) {
@ -433,7 +435,6 @@ class AuditService {
}
});
// Enhanced validation for audit quality
if (entry.action === 'ai-decision' && !entry.metadata?.aiPrompt && !entry.metadata?.reasoning) {
warnings.push(`Entry ${index}: AI decision lacks transparency (no prompt or reasoning)`);
}
@ -442,7 +443,6 @@ class AuditService {
warnings.push(`Entry ${index}: Tool selection lacks methodology info`);
}
// Data type validation
if (typeof entry.confidence !== 'number' || entry.confidence < 0 || entry.confidence > 100) {
warnings.push(`Entry ${index} has invalid confidence value: ${entry.confidence}`);
}

View File

@ -1,6 +1,5 @@
// src/utils/clientUtils.ts - Consolidated (removes duplicates from toolHelpers.ts)
// src/utils/clientUtils.ts
// Tool helper functions (moved here to avoid circular imports)
export function createToolSlug(toolName: string): string {
if (!toolName || typeof toolName !== 'string') {
console.warn('[CLIENT-UTILS] Invalid toolName provided to createToolSlug:', toolName);
@ -30,7 +29,6 @@ export function isToolHosted(tool: any): boolean {
tool.projectUrl.trim() !== "";
}
// Text and display utilities
export function sanitizeText(text: string): string {
if (typeof text !== 'string') return '';
@ -60,7 +58,6 @@ export function truncateText(text: string, maxLength: number): string {
return text.slice(0, maxLength) + '...';
}
// Data summarization utilities
export function summarizeData(data: any): string {
if (data === null || data === undefined) return 'null';
if (typeof data === 'string') {
@ -85,7 +82,6 @@ export function summarizeData(data: any): string {
return String(data);
}
// Time formatting utilities
export function formatDuration(ms: number): string {
if (ms < 1000) return '< 1s';
if (ms < 60000) return `${Math.ceil(ms / 1000)}s`;
@ -94,7 +90,6 @@ export function formatDuration(ms: number): string {
return seconds > 0 ? `${minutes}m ${seconds}s` : `${minutes}m`;
}
// DOM utilities
export function showElement(element: HTMLElement | null): void {
if (element) {
element.style.display = 'block';
@ -109,7 +104,6 @@ export function hideElement(element: HTMLElement | null): void {
}
}
// Autocomplete functionality (kept from original clientUtils.ts as it's UI-specific)
interface AutocompleteOptions {
minLength?: number;
maxResults?: number;

View File

@ -44,7 +44,7 @@ class ConfidenceScoring {
highThreshold: this.getEnvInt('CONFIDENCE_HIGH_THRESHOLD', 80)
};
console.log('[CONFIDENCE-SCORING] Initialized with config:', this.config);
console.log('[CONFIDENCE-SCORING] Initialized with restored config:', this.config);
}
private getEnvFloat(key: string, defaultValue: number): number {
@ -70,7 +70,6 @@ class ConfidenceScoring {
let enhancedTaskSuitability = taskRelevance;
// Phase alignment bonus for workflow mode
if (context.mode === 'workflow') {
const toolSelection = context.selectedTools?.find((st: any) => st.tool && st.tool.name === tool.name);
if (toolSelection && tool.phases && Array.isArray(tool.phases) && tool.phases.includes(toolSelection.phase)) {
@ -116,18 +115,15 @@ class ConfidenceScoring {
): string[] {
const factors: string[] = [];
// Add explicit limitations
if (limitations?.length > 0) {
factors.push(...limitations.slice(0, 2));
}
// Semantic similarity concerns
const similarity = context.embeddingsSimilarities.get(tool.name) || 0.5;
if (similarity < 0.7) {
factors.push('Geringe semantische Ähnlichkeit zur Anfrage');
}
// Skill level vs query complexity mismatches
if (tool.skillLevel === 'expert' && /schnell|rapid|triage|urgent|sofort/i.test(context.userQuery)) {
factors.push('Experten-Tool für zeitkritisches Szenario');
}
@ -136,17 +132,14 @@ class ConfidenceScoring {
factors.push('Einsteiger-Tool für komplexe Analyse');
}
// Technical accessibility concerns
if (tool.type === 'software' && !isToolHosted(tool) && tool.accessType === 'download') {
factors.push('Installation und Setup erforderlich');
}
// Licensing concerns
if (tool.license === 'Proprietary') {
factors.push('Kommerzielle Software - Lizenzkosten zu beachten');
}
// Overall confidence concerns
if (confidence < 60) {
factors.push('Moderate Gesamtbewertung - alternative Ansätze empfohlen');
}
@ -157,28 +150,23 @@ class ConfidenceScoring {
private identifyStrengthIndicators(tool: any, context: AnalysisContext, confidence: number): string[] {
const indicators: string[] = [];
// High semantic relevance
const similarity = context.embeddingsSimilarities.get(tool.name) || 0.5;
if (similarity >= 0.7) {
indicators.push('Sehr gute semantische Übereinstimmung mit Ihrer Anfrage');
}
// Documentation availability
if (tool.knowledgebase === true) {
indicators.push('Umfassende Dokumentation und Wissensbasis verfügbar');
}
// Immediate availability
if (isToolHosted(tool)) {
indicators.push('Sofort verfügbar über gehostete Lösung');
}
// Balanced skill requirements
if (tool.skillLevel === 'intermediate' || tool.skillLevel === 'advanced') {
indicators.push('Ausgewogenes Verhältnis zwischen Funktionalität und Benutzerfreundlichkeit');
}
// Method-query alignment
if (tool.type === 'method' && /methodik|vorgehen|prozess|ansatz/i.test(context.userQuery)) {
indicators.push('Methodischer Ansatz passt zu Ihrer prozeduralen Anfrage');
}
@ -197,12 +185,10 @@ class ConfidenceScoring {
let confidence = 60;
// Selection ratio scoring
if (selectionRatio > 0.05 && selectionRatio < 0.3) confidence += 20;
else if (selectionRatio <= 0.05) confidence -= 10;
else confidence -= 15;
// Quality indicators
if (hasReasoning) confidence += 15;
if (result.selectedConcepts?.length > 0) confidence += 5;

View File

@ -1,10 +1,9 @@
// src/utils/jsonUtils.ts - Centralized JSON parsing and utilities
// src/utils/jsonUtils.ts
export class JSONParser {
static safeParseJSON(jsonString: string, fallback: any = null): any {
try {
let cleaned = jsonString.trim();
// Remove code block markers
const jsonBlockPatterns = [
/```json\s*([\s\S]*?)\s*```/i,
/```\s*([\s\S]*?)\s*```/i,
@ -19,7 +18,6 @@ export class JSONParser {
}
}
// Handle truncated JSON
if (!cleaned.endsWith('}') && !cleaned.endsWith(']')) {
console.warn('[JSON-PARSER] JSON appears truncated, attempting recovery');
cleaned = this.repairTruncatedJSON(cleaned);
@ -27,7 +25,6 @@ export class JSONParser {
const parsed = JSON.parse(cleaned);
// Ensure proper structure for tool selection responses
if (parsed && typeof parsed === 'object') {
if (!parsed.selectedTools) parsed.selectedTools = [];
if (!parsed.selectedConcepts) parsed.selectedConcepts = [];
@ -109,7 +106,6 @@ export class JSONParser {
}
}
// Fallback: extract any quoted strings that look like tool names
if (selectedTools.length === 0 && selectedConcepts.length === 0) {
const allMatches = jsonString.match(/"([^"]+)"/g);
if (allMatches) {
@ -139,7 +135,6 @@ export class JSONParser {
throw new Error(`JSON string too large (${jsonString.length} bytes, max ${maxSize})`);
}
// Security checks for potentially malicious content
const suspiciousPatterns = [
/<script/i,
/javascript:/i,
@ -158,7 +153,6 @@ export class JSONParser {
try {
const parsed = JSON.parse(jsonString);
// Validate basic structure
if (typeof parsed !== 'object' || parsed === null) {
throw new Error('JSON must be an object');
}
@ -182,11 +176,9 @@ export class JSONParser {
}
if (typeof obj === 'string') {
// Sanitize strings that might contain sensitive data
if (obj.length > 500) {
return obj.slice(0, 500) + '...[truncated]';
}
// Remove potential code injection patterns
return obj.replace(/<script[\s\S]*?<\/script>/gi, '[script removed]');
}
@ -217,7 +209,6 @@ export class JSONParser {
const sanitized: any = {};
keys.forEach(key => {
// Skip potential dangerous properties
if (['__proto__', 'constructor', 'prototype'].includes(key)) {
return;
}
@ -237,7 +228,6 @@ export class JSONParser {
return { isValid: false, errors };
}
// Check required top-level properties
const requiredProps = ['metadata', 'recommendation', 'auditTrail'];
for (const prop of requiredProps) {
if (!(prop in data)) {
@ -245,7 +235,6 @@ export class JSONParser {
}
}
// Validate metadata
if (data.metadata && typeof data.metadata === 'object') {
const requiredMetadataProps = ['timestamp', 'version', 'userQuery', 'mode'];
for (const prop of requiredMetadataProps) {
@ -257,7 +246,6 @@ export class JSONParser {
errors.push('Invalid metadata structure');
}
// Validate audit trail
if (!Array.isArray(data.auditTrail)) {
errors.push('auditTrail must be an array');
} else {
@ -293,7 +281,7 @@ export class JSONParser {
metadata: {
timestamp: new Date().toISOString(),
version: "1.0",
userQuery: userQuery.slice(0, 1000), // Truncate for security
userQuery: userQuery.slice(0, 1000),
mode,
exportedBy: 'ForensicPathways',
toolsDataHash: additionalMetadata.toolsDataHash || 'unknown',
@ -316,16 +304,13 @@ export class JSONParser {
const issues: string[] = [];
const warnings: string[] = [];
// Basic structure validation
const structureValidation = this.validateAuditExportStructure(data);
if (!structureValidation.isValid) {
issues.push(...structureValidation.errors);
return { isValid: false, issues, warnings };
}
// Additional validation for uploaded content
if (data.metadata) {
// Check timestamp validity
const timestamp = new Date(data.metadata.timestamp);
if (isNaN(timestamp.getTime())) {
warnings.push('Invalid timestamp in metadata');
@ -337,13 +322,11 @@ export class JSONParser {
}
}
// Validate mode
if (!['workflow', 'tool'].includes(data.metadata.mode)) {
warnings.push(`Unknown analysis mode: ${data.metadata.mode}`);
}
}
// Validate audit trail quality
if (Array.isArray(data.auditTrail)) {
const aiDecisions = data.auditTrail.filter(e => e.action === 'ai-decision').length;
const toolSelections = data.auditTrail.filter(e => e.action === 'selection-decision').length;
@ -356,7 +339,6 @@ export class JSONParser {
warnings.push('No tool selections found in audit trail');
}
// Check for confidence values
const entriesWithConfidence = data.auditTrail.filter(e => typeof e.confidence === 'number').length;
const confidenceRatio = entriesWithConfidence / data.auditTrail.length;

View File

@ -2,7 +2,7 @@
import { aiService } from './aiService.js';
import { embeddingsService, type SimilarityResult } from './embeddings.js';
import { confidenceScoring } from './confidenceScoring.js';
import { JSONParser } from './jsonUtils.js'; // FIXED: Use centralized JSON parsing
import { JSONParser } from './jsonUtils.js';
import { getPrompt } from '../config/prompts.js';
import 'dotenv/config';
@ -111,7 +111,6 @@ class ToolSelector {
console.log('[TOOL-SELECTOR] Embeddings found', similarItems.length, 'similar items');
// Store similarities for confidence calculation
similarItems.forEach(item => {
context.embeddingsSimilarities.set(item.name, item.similarity);
});
@ -238,7 +237,6 @@ class ToolSelector {
const basePrompt = getPrompt('toolSelection', mode, userQuery, selectionMethod, this.config.maxSelectedItems);
const prompt = getPrompt('toolSelectionWithData', basePrompt, toolsToSend, conceptsToSend);
// Validate prompt length
aiService.validatePromptLength(prompt);
console.log('[TOOL-SELECTOR] Sending to AI:',
@ -249,7 +247,6 @@ class ToolSelector {
try {
const response = await aiService.callAI(prompt, { maxTokens: 2500 });
// FIXED: Use centralized JSON parsing
const result = JSONParser.safeParseJSON(response.content, null);
if (!result || !Array.isArray(result.selectedTools) || !Array.isArray(result.selectedConcepts)) {
@ -315,7 +312,6 @@ class ToolSelector {
try {
const response = await aiService.callMicroTaskAI(prompt, 1000);
// FIXED: Use centralized JSON parsing
const selections = JSONParser.safeParseJSON(response.content, []);
if (Array.isArray(selections)) {
@ -368,8 +364,6 @@ class ToolSelector {
related_software: concept.related_software || []
});
// REMOVED: safeParseJSON method - now using centralized version from jsonUtils.ts
getConfig(): ToolSelectionConfig {
return { ...this.config };
}