Compare commits

...

16 Commits

Author SHA1 Message Date
overcuriousity
bdee77f459 update color palette, dependencies, fix in tools.yaml 2025-09-10 10:37:14 +02:00
8a6d9d3324 src/data/tools.yaml aktualisiert 2025-09-08 10:22:44 +00:00
overcuriousity
dc9f52fb7c cleanup, prompt centralization 2025-08-29 14:50:11 +02:00
overcuriousity
b17458d153 enhance prompts 2025-08-29 12:53:36 +02:00
overcuriousity
b14ca1d243 fix tool mode ai pipiline logic 2025-08-29 12:27:15 +02:00
overcuriousity
4ee1cc4984 replace nwc 2025-08-23 22:23:33 +02:00
overcuriousity
bbe1b12251 lightning 2025-08-23 11:06:57 +02:00
overcuriousity
d569b74a20 revert 2025-08-23 01:23:52 +02:00
overcuriousity
a2d3d3170a package.json 2025-08-23 01:15:22 +02:00
overcuriousity
3823407d49 fix lightning 2025-08-23 01:03:57 +02:00
overcuriousity
496f2a5b43 fix lightning 2025-08-23 00:43:23 +02:00
overcuriousity
20a4c71d02 lighning tips 2025-08-23 00:30:24 +02:00
overcuriousity
dad5e5ea0c embeddings fix 2025-08-18 01:18:40 +02:00
overcuriousity
b689f24502 fix embeddings enabled 2025-08-18 01:07:46 +02:00
overcuriousity
630fc1643e enabled embeddings by default 2025-08-18 01:03:45 +02:00
overcuriousity
1d750307c4 .env.example 2025-08-18 01:00:41 +02:00
16 changed files with 188419 additions and 187170 deletions

View File

@@ -1,5 +1,5 @@
{
"_variables": {
"lastUpdateCheck": 1754571688630
"lastUpdateCheck": 1755901660216
}
}

View File

@@ -59,8 +59,7 @@ FORENSIC_AUDIT_RETENTION_HOURS=24
FORENSIC_AUDIT_MAX_ENTRIES=50
# === AI SEMANTIC SEARCH ===
# Enable semantic search (highly recommended for better results)
REMOVE_AI_EMBEDDINGS_ENABLED=true
# semantic search
AI_EMBEDDINGS_ENDPOINT=https://api.mistral.ai/v1/embeddings
AI_EMBEDDINGS_API_KEY=your-embeddings-api-key-here
AI_EMBEDDINGS_MODEL=mistral-embed
@@ -101,17 +100,11 @@ AI_SOFTWARE_SELECTION_RATIO=0.5 # 50% software tools (increase for more tool re
# AI selection limits
AI_MAX_SELECTED_ITEMS=25
AI_MAX_TOOLS_TO_ANALYZE=20
AI_MAX_CONCEPTS_TO_ANALYZE=10
# Efficiency thresholds
AI_EMBEDDINGS_MIN_TOOLS=8
AI_EMBEDDINGS_MAX_REDUCTION_RATIO=0.75
# Fallback limits when embeddings are disabled
AI_NO_EMBEDDINGS_TOOL_LIMIT=25
AI_NO_EMBEDDINGS_CONCEPT_LIMIT=10
# === Rate Limiting & Timing ===
AI_MICRO_TASK_TOTAL_LIMIT=30
AI_MICRO_TASK_DELAY_MS=500
@@ -121,10 +114,6 @@ AI_RATE_LIMIT_DELAY_MS=2000
AI_EMBEDDINGS_BATCH_SIZE=10
AI_EMBEDDINGS_BATCH_DELAY_MS=1000
# === Context Management ===
REMOVE_AI_MAX_CONTEXT_TOKENS=4000
REMOVE_AI_MAX_PROMPT_TOKENS=2500
# === Confidence Scoring ===
CONFIDENCE_SEMANTIC_WEIGHT=0.5
CONFIDENCE_SUITABILITY_WEIGHT=0.5

File diff suppressed because it is too large Load Diff

View File

@@ -10,15 +10,14 @@
"astro": "astro"
},
"dependencies": {
"@astrojs/node": "^9.3.0",
"@aws-sdk/client-s3": "^3.864.0",
"@aws-sdk/s3-request-presigner": "^3.864.0",
"astro": "^5.12.3",
"@astrojs/node": "^9.4.3",
"astro": "^5.13.7",
"cookie": "^1.0.2",
"dotenv": "^16.4.5",
"jose": "^5.2.0",
"dotenv": "^16.6.1",
"jose": "^5.10.0",
"js-yaml": "^4.1.0",
"jsonwebtoken": "^9.0.2",
"simple-boost": "^2.0.2",
"zod": "^3.25.76"
},
"devDependencies": {

View File

@@ -1130,16 +1130,12 @@ class AIQueryInterface {
const lowConfidenceSteps = auditTrail.filter(entry => (entry.confidence || 0) < 60).length;
const mediumConfidenceSteps = auditTrail.length - highConfidenceSteps - lowConfidenceSteps;
// FIX 1: Count actual AI decision actions only
const aiDecisionCount = auditTrail.filter(entry => entry.action === 'ai-decision').length;
// FIX 2: Count actual similarity search actions, not metadata flags
const embeddingsUsageCount = auditTrail.filter(entry => entry.action === 'similarity-search').length;
// FIX 3: Maintain tool selection count (this was correct)
const toolSelectionCount = auditTrail.filter(entry => entry.action === 'selection-decision').length;
// Additional diagnostic counts for debugging
const microTaskCount = auditTrail.filter(entry =>
entry.action === 'ai-decision' && entry.metadata?.microTaskType
).length;
@@ -1152,7 +1148,6 @@ class AIQueryInterface {
entry.action === 'phase-enhancement'
).length;
// Enhanced insights with diagnostic information
const keyInsights = [];
const potentialIssues = [];
@@ -1172,7 +1167,6 @@ class AIQueryInterface {
keyInsights.push(`${microTaskCount} spezialisierte Micro-Task-Analysen durchgeführt`);
}
// Detect mode-specific patterns for validation
if (phaseToolSelectionCount > 0 || phaseEnhancementCount > 0) {
keyInsights.push('Workflow-Modus: Phasenspezifische Analyse durchgeführt');
} else if (microTaskCount >= 3) {
@@ -1216,10 +1210,9 @@ class AIQueryInterface {
keyInsights.push('Mehrheit der Analyseschritte mit hoher Sicherheit');
}
// Validate expected counts based on mode detection
const isWorkflowMode = phaseToolSelectionCount > 0 || phaseEnhancementCount > 0;
const expectedMinAI = isWorkflowMode ? 11 : 8; // Workflow: 5 common + 6 phase selections, Tool: 5 common + 3 evaluations
const expectedMinEmbeddings = 1; // Both modes should have initial search
const expectedMinAI = isWorkflowMode ? 11 : 8;
const expectedMinEmbeddings = 1;
if (aiDecisionCount < expectedMinAI) {
potentialIssues.push(`${expectedMinAI - aiDecisionCount} fehlende KI-Entscheidungen für ${isWorkflowMode ? 'Workflow' : 'Tool'}-Modus`);
@@ -1250,7 +1243,6 @@ class AIQueryInterface {
analysisQuality,
keyInsights,
potentialIssues,
// Debug information
debugCounts: {
microTaskCount,
phaseToolSelectionCount,

View File

@@ -55,7 +55,7 @@ const sortedTags = Object.entries(tagFrequency)
<!-- Semantic Search Toggle - Inline -->
<div id="semantic-search-container" class="semantic-search-inline hidden">
<label class="semantic-toggle-wrapper" title="Semantische Suche verwendet Embeddings. Dadurch kann mit natürlicher Sprache/Begriffen gesucht werden, die Ergebnisse richten sich nach der euklidischen Distanz.">
<label class="semantic-toggle-wrapper" title="Semantische Suche verwendet Embeddings. Dadurch kann mit natürlicher Sprache/Begriffen gesucht werden, die Ergebnisse richten sich nach der cosinus-Distanz.">
<input type="checkbox" id="semantic-search-enabled" disabled/>
<div class="semantic-checkbox-custom"></div>
<span class="semantic-toggle-label">
@@ -358,7 +358,7 @@ const sortedTags = Object.entries(tagFrequency)
try {
const res = await fetch('/api/ai/embeddings-status');
const { embeddings } = await res.json();
semanticSearchAvailable = embeddings?.enabled && embeddings?.initialized;
semanticSearchAvailable = embeddings?.initialized;
if (semanticSearchAvailable) {
elements.semanticContainer.classList.remove('hidden');

View File

@@ -1,118 +1,156 @@
// src/config/prompts.ts
const RELEVANCE_RUBRIC = `
TASK RELEVANCE (INTEGER 0100, NO %):
- 5565 = Basis/ok
- 6675 = Gut geeignet
- 7685 = Sehr gut geeignet
- >85 = Nur bei nahezu perfekter Übereinstimmung
`.trim();
const STRICTNESS = `
STRICTNESS:
- Output MUST be pure JSON (no prose, no code fences, no trailing commas).
- Use EXACT item names as provided (casing/spelling must match).
- Do NOT invent items or fields. If unsure, select fewer.
`.trim();
export const AI_PROMPTS = {
enhancementQuestions: (input: string) => {
return `Sie sind DFIR-Experte. Ein Nutzer beschreibt unten ein Szenario/Problem.
ZIEL:
- Stellen Sie NUR dann 13 präzise Rückfragen, wenn entscheidende forensische Lücken die weitere Analyse/Toolauswahl PHASENREIHENFOLGE oder EVIDENCE-STRATEGIE wesentlich beeinflussen würden.
- Wenn ausreichend abgedeckt: Geben Sie eine leere Liste [] zurück.
PRIORITÄT DER THEMEN (in dieser Reihenfolge prüfen):
1) Available Evidence & Artefakte (z.B. RAM-Dump, Disk-Image, Logs, PCAP, Registry, Cloud/Audit-Logs)
2) Scope/Systems (konkrete Plattformen/Assets/Identitäten/Netzsegmente)
3) Investigation Objectives (Ziele: IOC-Extraktion, Timeline, Impact, Attribution)
4) Timeline/Timeframe (kritische Zeitfenster, Erhalt flüchtiger Daten)
5) Legal & Compliance (Chain of Custody, Aufbewahrung, DSGVO/Branchenvorgaben)
6) Technical Constraints (Ressourcen, Zugriffsrechte, Tooling/EDR)
FRAGEN-QUALITÄT:
- Forensisch spezifisch und entscheidungsrelevant (keine Allgemeinplätze).
- Eine Frage pro Thema, keine Dopplungen.
- Antwortbar vom Nutzer (keine Spekulation, keine “Beweise senden”-Aufforderungen).
- Maximal 18 Wörter, endet mit "?".
VALIDIERUNG:
- Stellen Sie NUR Fragen zu Themen, die im Nutzertext NICHT hinreichend konkret beantwortet sind (keine Wiederholung bereits gegebener Details).
- Wenn alle priorisierten Themen ausreichend sind → [].
ANTWORTFORMAT (NUR JSON, KEIN ZUSÄTZLICHER TEXT):
[
"präzise Frage 1?",
"präzise Frage 2?",
"präzise Frage 3?"
]
NUTZER-EINGABE:
${input}`.trim();
},
toolSelection: (mode: string, userQuery: string, maxSelectedItems: number) => {
const modeInstruction = mode === 'workflow'
? 'Workflow mit 15-25 Items über alle Phasen. PFLICHT: Mindestens 40% Methoden, Rest Tools/Konzepte.'
: 'Spezifische Lösung mit 4-10 Items. PFLICHT: Mindestens 30% Methoden wenn verfügbar.';
const modeInstruction =
mode === 'workflow'
? 'Workflow mit 1525 Items über alle Phasen. Pflicht: ~40% Methoden, Rest Software/Konzepte (falls verfügbar).'
: 'Spezifische Lösung mit 410 Items. Pflicht: ≥30% Methoden (falls verfügbar).';
return `Du bist ein DFIR-Experte. Wähle die BESTEN Items aus dem vorgefilterten Set.
AUSWAHLMETHODE:
'✓ Semantisch relevante Items bereits vorgefiltert\n✓ Wähle die BESTEN für die konkrete Aufgabe'}
return `Du bist DFIR-Experte. Wähle die BESTEN Items aus dem bereits semantisch vorgefilterten Set für die konkrete Aufgabe.
${modeInstruction}
ANFRAGE: "${userQuery}"
VERFÜGBARE ITEM-TYPEN:
- TOOLS (type: "software"/"method") → praktische Anwendungen und Vorgehensweisen
- KONZEPTE (type: "concept") → theoretisches Wissen und Methodiken
ITEM-TYPEN:
- TOOLS (type: "software" | "method")
- KONZEPTE (type: "concept")
AUSWAHLSTRATEGIE:
1. **ERSTE PRIORITÄT: Relevanz zur Anfrage**
- Direkt anwendbar auf das Problem
- Löst die Kernherausforderung
2. **ZWEITE PRIORITÄT: Ausgewogene Mischung**
- Tools/Methoden für praktische Umsetzung → selectedTools
- Konzepte für methodisches Verständnis → selectedConcepts
- WICHTIG: Auch Konzepte auswählen, nicht nur Tools!
3. **QUALITÄT > QUANTITÄT**
- Lieber weniger perfekte Items als viele mittelmäßige
- Jedes Item muss begründbar sein
4. **TASK RELEVANCE REALISM**
- Gib realistische Bewertungen (50-85% typisch)
- Vermeide übertriebene 90-100% Scores
- Nur bei perfekter Übereinstimmung >85%
AUSWAHLPRINZIPIEN:
1) Relevanz zur Anfrage (direkt anwendbar, adressiert Kernproblem)
2) Ausgewogene Mischung (Praxis: selectedTools; Methodik: selectedConcepts)
3) Qualität > Quantität (lieber weniger, dafür passgenau)
4) Keine Erfindungen. Wenn etwas nicht passt, wähle weniger.
AUSWAHLREGELN:
- Wähle ${mode === 'workflow' ? '15-25' : '4-10'} Items total, max ${maxSelectedItems}
- BEIDE Arrays füllen: selectedTools UND selectedConcepts
- Mindestens 1-2 Konzepte auswählen für methodische Fundierung
- Tools: 40% Methoden (type="method"), Rest Software (type="software")
- Wähle ${mode === 'workflow' ? '1525' : '410'} Items total (max ${maxSelectedItems})
- Fülle BEIDE Arrays: selectedTools UND selectedConcepts
- Mindestens 12 Konzepte (falls verfügbar)
- Bevorzugt ~40% Methoden (Workflow) bzw. ≥30% Methoden (Tool-Modus), sofern vorhanden
- Sortiere selectedTools grob nach Eignung (bestes zuerst)
ANTWORT AUSSCHLIESSLICH IM JSON-FORMAT:
Skalenhinweis (für spätere Schritte einheitlich):
${RELEVANCE_RUBRIC}
${STRICTNESS}
ANTWORT (NUR JSON):
{
"selectedTools": ["ToolName1", "MethodName1", ...],
"selectedConcepts": ["ConceptName1", "ConceptName2", ...],
"reasoning": "Kurze Begründung mit Erwähnung der Tool/Konzept-Balance"
"selectedTools": ["ToolName1", "MethodName1", "..."],
"selectedConcepts": ["ConceptName1", "ConceptName2", "..."],
"reasoning": "Sehr kurz: Balance/Abdeckung begründen"
}`;
},
toolSelectionWithData: (basePrompt: string, toolsToSend: any[], conceptsToSend: any[]) => {
return `${basePrompt}
VERFÜGBARE TOOLS (${toolsToSend.length} Items - Methoden und Software):
VERFÜGBARE TOOLS (${toolsToSend.length}):
${JSON.stringify(toolsToSend, null, 2)}
VERFÜGBARE KONZEPTE (${conceptsToSend.length} Items - theoretisches Wissen):
VERFÜGBARE KONZEPTE (${conceptsToSend.length}):
${JSON.stringify(conceptsToSend, null, 2)}
WICHTIGER HINWEIS: Wähle sowohl aus TOOLS als auch aus KONZEPTEN aus! Konzepte sind essentiell für methodische Fundierung.
WICHTIG:
- Wähle nur aus obigen Listen. Keine neuen Namen.
- Nutze exakte Namen. Keine Synonyme/Varianten.
TASK RELEVANCE GUIDELINES:
- 50-65%: Grundlegend relevant, aber nicht optimal
- 66-75%: Gut geeignet für die Aufgabe
- 76-85%: Sehr gut geeignet, klare Vorteile
- 86-100%: NUR für perfekte Übereinstimmung verwenden`;
Hinweis zur einheitlichen Relevanz-Skala:
${RELEVANCE_RUBRIC}
${STRICTNESS}`;
},
scenarioAnalysis: (isWorkflow: boolean, userQuery: string) => {
const analysisType = isWorkflow ? 'Szenario' : 'Problem';
const focus = isWorkflow ?
'Angriffsvektoren, betroffene Systeme, Zeitkritikalität' :
'Kernherausforderung, verfügbare Daten, methodische Anforderungen';
const focus = isWorkflow
? 'Angriffsvektoren, betroffene Systeme, Zeitkritikalität'
: 'Kernherausforderung, verfügbare Daten, methodische Anforderungen';
return `DFIR-Experte: Analysiere das ${analysisType}.
${isWorkflow ? 'SZENARIO' : 'PROBLEM'}: "${userQuery}"
Fokus: ${focus}
Antwort: Fließtext ohne Listen, max 100 Wörter.`;
Antwort: Fließtext, max 100 Wörter. Keine Liste, keine Einleitung.`;
},
investigationApproach: (isWorkflow: boolean, userQuery: string) => {
const approachType = isWorkflow ? 'Untersuchungsansatz' : 'Lösungsansatz';
const focus = isWorkflow ?
'Triage-Prioritäten, Phasenabfolge, Kontaminationsvermeidung' :
'Methodenauswahl, Validierung, Integration';
const focus = isWorkflow
? 'Triage-Prioritäten, Phasenabfolge, Kontaminationsvermeidung'
: 'Methodenauswahl, Validierung, Integration';
return `Entwickle einen ${approachType}.
${isWorkflow ? 'SZENARIO' : 'PROBLEM'}: "${userQuery}"
Fokus: ${focus}
Antwort: Fließtext ohne Listen, max 100 Wörter.`;
Antwort: Fließtext, max 100 Wörter.`;
},
criticalConsiderations: (isWorkflow: boolean, userQuery: string) => {
const focus = isWorkflow ?
'Beweissicherung vs. Gründlichkeit, Chain of Custody' :
'Tool-Validierung, False Positives/Negatives, Qualifikationen';
const focus = isWorkflow
? 'Beweissicherung vs. Gründlichkeit, Chain of Custody'
: 'Tool-Validierung, False Positives/Negatives, Qualifikationen';
return `Identifiziere kritische Überlegungen.
${isWorkflow ? 'SZENARIO' : 'PROBLEM'}: "${userQuery}"
Fokus: ${focus}
Antwort: Fließtext ohne Listen, max 100 Wörter.`;
Antwort: Fließtext, max 100 Wörter.`;
},
phaseToolSelection: (userQuery: string, phase: any, phaseTools: any[]) => {
@@ -123,96 +161,103 @@ Antwort: Fließtext ohne Listen, max 100 Wörter.`;
return `Keine Methoden/Tools für Phase "${phase.name}" verfügbar. Antworte mit leerem Array: []`;
}
return `Du bist ein DFIR-Experte. Wähle die 2-3 BESTEN Items für Phase "${phase.name}".
return `Wähle die 23 BESTEN Items für Phase "${phase.name}".
SZENARIO: "${userQuery}"
PHASE: ${phase.name} - ${phase.description || ''}
PHASE: ${phase.name} ${phase.description || ''}
VERFÜGBARE ITEMS (bereits von KI vorausgewählt):
VERFÜGBARE ITEMS:
${methods.length > 0 ? `
METHODEN (${methods.length}):
${methods.map((method: any) =>
`- ${method.name}
Typ: ${method.type}
Beschreibung: ${method.description}
Domains: ${method.domains?.join(', ') || 'N/A'}
Skill Level: ${method.skillLevel}`
${methods.map((m: any) =>
`- ${m.name}
Typ: ${m.type}
Beschreibung: ${m.description}
Domains: ${m.domains?.join(', ') || 'N/A'}
Skill Level: ${m.skillLevel}`
).join('\n\n')}
` : 'Keine Methoden verfügbar'}
${tools.length > 0 ? `
SOFTWARE TOOLS (${tools.length}):
${tools.map((tool: any) =>
`- ${tool.name}
Typ: ${tool.type}
Beschreibung: ${tool.description}
Plattformen: ${tool.platforms?.join(', ') || 'N/A'}
Skill Level: ${tool.skillLevel}`
SOFTWARE (${tools.length}):
${tools.map((t: any) =>
`- ${t.name}
Typ: ${t.type}
Beschreibung: ${t.description}
Plattformen: ${t.platforms?.join(', ') || 'N/A'}
Skill Level: ${t.skillLevel}`
).join('\n\n')}
` : 'Keine Software-Tools verfügbar'}
AUSWAHLREGELN FÜR PHASE "${phase.name}":
1. Wähle die 2-3 BESTEN Items für diese spezifische Phase
2. Priorisiere Items, die DIREKT für "${phase.name}" relevant sind
3. Mindestens 1 Methode wenn verfügbar, Rest Software-Tools
4. Begründe WARUM jedes Item für diese Phase optimal ist
REGELN:
1) 23 Items, direkt phasenrelevant; mind. 1 Methode, falls verfügbar
2) Begründung pro Item (präzise, anwendungsbezogen)
3) Verwende EXAKTE Namen aus den Listen. Keine Erfindungen.
TASK RELEVANCE GUIDELINES:
- 60-70%: Grundlegend für diese Phase geeignet
- 71-80%: Gut geeignet, klare Phasenrelevanz
- 81-90%: Sehr gut geeignet, optimal für Phase
- 91-100%: NUR für perfekte Phasenübereinstimmung
${RELEVANCE_RUBRIC}
WICHTIG: Verwende EXAKT die Namen wie oben aufgelistet (ohne Präfixe wie M1./T2.)!
${STRICTNESS}
ANTWORT AUSSCHLIESSLICH IM JSON-FORMAT OHNE JEGLICHEN TEXT AUSSERHALB:
ANTWORT (NUR JSON):
[
{
"toolName": "Exakter Name aus der Liste oben",
"taskRelevance": 75,
"justification": "Detaillierte Begründung (60-80 Wörter) warum optimal für ${phase.name} - erkläre Anwendung, Vorteile und spezifische Relevanz",
"limitations": ["Mögliche Einschränkung für diese Phase"]
"toolName": "Exakter Name",
"taskRelevance": 0,
"justification": "6080 Wörter zur phasenspezifischen Eignung",
"limitations": ["Optionale spezifische Einschränkung"]
}
]`;
},
toolEvaluation: (userQuery: string, tool: any, rank: number, taskRelevance: number) => {
toolEvaluation: (userQuery: string, tool: any, rank: number) => {
const itemType = tool.type === 'method' ? 'Methode' : 'Tool';
return `Erkläre die Anwendung dieser/dieses ${itemType}.
return `Bewerte diese/diesen ${itemType} ausschließlich bzgl. des PROBLEMS.
PROBLEM: "${userQuery}"
${itemType.toUpperCase()}: ${tool.name} (${taskRelevance}% Eignung)
${itemType.toUpperCase()}: ${tool.name}
TYP: ${tool.type}
Bereits als Rang ${rank} bewertet.
ANWEISUNGEN:
- Nur vorhandene Metadaten nutzen (keine Annahmen, keine Websuche).
- "taskRelevance" als GANZZAHL 0100 nach einheitlicher Skala vergeben.
- Realistische Scores i.d.R. 6080, >85 nur bei nahezu perfektem Fit.
- Keine Texte außerhalb des JSON.
ANTWORT AUSSCHLIESSLICH IM JSON-FORMAT OHNE JEGLICHEN TEXT AUSSERHALB DER JSON-STRUKTUR:
${RELEVANCE_RUBRIC}
${STRICTNESS}
ANTWORT (NUR JSON):
{
"detailed_explanation": "Warum und wie einsetzen",
"implementation_approach": "Konkrete Schritte",
"pros": ["Vorteil 1", "Vorteil 2"],
"limitations": ["Einschränkung 1"],
"alternatives": "Alternative Ansätze"
"alternatives": "Kurz zu sinnvollen Alternativen",
"taskRelevance": 0
}`;
},
backgroundKnowledgeSelection: (userQuery: string, mode: string, selectedToolNames: string[], availableConcepts: any[]) => {
return `Wähle 2-4 relevante Konzepte.
return `Wähle 24 Konzepte, die das Verständnis/den Einsatz der ausgewählten Tools verbessern.
${mode === 'workflow' ? 'SZENARIO' : 'PROBLEM'}: "${userQuery}"
AUSGEWÄHLTE TOOLS: ${selectedToolNames.join(', ')}
VERFÜGBARE KONZEPTE (${availableConcepts.length} KI-kuratiert):
${availableConcepts.map((c: any) =>
`- ${c.name}: ${c.description}...`
).join('\n')}
VERFÜGBARE KONZEPTE (${availableConcepts.length}):
${availableConcepts.map((c: any) => `- ${c.name}: ${c.description}...`).join('\n')}
ANTWORT AUSSCHLIESSLICH IM JSON-FORMAT OHNE JEGLICHEN TEXT AUSSERHALB DER JSON-STRUKTUR:
REGELN:
- Nur Konzepte aus obiger Liste wählen.
- Relevanz kurz und konkret begründen.
${STRICTNESS}
ANTWORT (NUR JSON):
[
{
"conceptName": "Name",
"relevance": "Warum kritisch für Methodik"
"conceptName": "Exakter Name",
"relevance": "Warum dieses Konzept hier methodisch wichtig ist"
}
]`;
},
@@ -224,27 +269,14 @@ ANTWORT AUSSCHLIESSLICH IM JSON-FORMAT OHNE JEGLICHEN TEXT AUSSERHALB DER JSON-S
tool: any,
completionContext: string
) => {
return `Du bist ein DFIR-Experte. Erkläre warum dieses Tool nachträglich zur Vervollständigung hinzugefügt wurde.
KONTEXT DER NACHTRÄGLICHEN ERGÄNZUNG:
- Ursprüngliche KI-Auswahl war zu spezifisch/eng gefasst
- Phase "${phase.name}" war unterrepräsentiert in der initialen Auswahl
- Semantische Suche fand zusätzlich relevante Tools für diese Phase
- Tool wird nachträglich hinzugefügt um Vollständigkeit zu gewährleisten
return `Begründe knapp die Nachergänzung für Phase "${phase.name}".
URSPRÜNGLICHE ANFRAGE: "${originalQuery}"
PHASE ZU VERVOLLSTÄNDIGEN: ${phase.name} - ${phase.description || ''}
PHASE: ${phase.name} ${phase.description || ''}
HINZUGEFÜGTES TOOL: ${selectedToolName} (${tool.type})
TOOL-BESCHREIBUNG: ${tool.description}
KONTEXT: ${completionContext}
BEGRÜNDUNGSKONTEXT: ${completionContext}
Erstelle eine präzise Begründung (max. 40 Wörter), die erklärt:
1. WARUM dieses Tool nachträglich hinzugefügt wurde
2. WIE es die ${phase.name}-Phase ergänzt
3. DASS es die ursprünglich zu spezifische Auswahl erweitert
Antwort: Prägnanter Fließtext, knappe Begründung für Nachergänzung. Vermeide Begriffe wie "Das Tool" und gib keinen einleitenden Text wie "Begründung (40 Wörter):" an.`;
Antwort: Prägnanter Fließtext, max 40 Wörter, keine Einleitung, keine Liste.`;
},
generatePhaseCompletionPrompt(
@@ -253,48 +285,48 @@ Antwort: Prägnanter Fließtext, knappe Begründung für Nachergänzung. Vermeid
candidateTools: any[],
candidateConcepts: any[]
): string {
return `Du bist ein DFIR-Experte. Die initiale KI-Auswahl war zu spezifisch - die Phase "${phase.name}" ist unterrepräsentiert.
return `Unterrepräsentierte Phase: "${phase.name}". Ergänze 12 passende Items aus der semantischen Nachsuche.
KONTEXT: Die Hauptauswahl hat zu wenige Tools für "${phase.name}" identifiziert. Wähle jetzt ergänzende Tools aus semantischer Nachsuche.
ORIGINALANFRAGE: "${originalQuery}"
PHASE: ${phase.name}${phase.description || ''}
ORIGINAL ANFRAGE: "${originalQuery}"
UNTERREPRÄSENTIERTE PHASE: ${phase.name} - ${phase.description || ''}
SEMANTISCH GEFUNDENE KANDIDATEN für Nachergänzung:
VERFÜGBARE TOOLS (${candidateTools.length}):
${candidateTools.map((tool: any) => `
- ${tool.name} (${tool.type})
Beschreibung: ${tool.description}
Skill Level: ${tool.skillLevel}
KANDIDATEN — TOOLS (${candidateTools.length}):
${candidateTools.map((t: any) => `
- ${t.name} (${t.type})
Beschreibung: ${t.description}
Skill Level: ${t.skillLevel}
`).join('')}
${candidateConcepts.length > 0 ? `
VERFÜGBARE KONZEPTE (${candidateConcepts.length}):
${candidateConcepts.map((concept: any) => `
- ${concept.name}
Beschreibung: ${concept.description}
KANDIDATEN — KONZEPTE (${candidateConcepts.length}):
${candidateConcepts.map((c: any) => `
- ${c.name}
Beschreibung: ${c.description}
`).join('')}
` : ''}
AUSWAHLREGELN FÜR NACHERGÄNZUNG:
1. Wähle 1-2 BESTE Methoden/Tools die die ${phase.name}-Phase optimal ergänzen
2. Methoden/Tools müssen für die ursprüngliche Anfrage relevant sein
3. Ergänzen, nicht ersetzen - erweitere die zu spezifische Erstauswahl
4. Realistische Task Relevance (70-85% typisch für Nachergänzungen)
REGELN:
- Wähle 12 Tools/Methoden, die ${phase.name} sinnvoll ergänzen (keine Ersetzung).
- Nur aus obigen Kandidaten wählen; exakte Namen verwenden.
- Kurze Begründung, warum diese Ergänzung nötig ist.
ANTWORT AUSSCHLIESSLICH IM JSON-FORMAT:
Skalenhinweis (einheitlich):
${RELEVANCE_RUBRIC}
${STRICTNESS}
ANTWORT (NUR JSON):
{
"selectedTools": ["ToolName1", "ToolName2"],
"selectedConcepts": ["ConceptName1"],
"completionReasoning": "Kurze Erklärung warum diese Nachergänzung r ${phase.name} notwendig war"
"completionReasoning": "Kurze Erklärung zur Ergänzung der ${phase.name}-Phase"
}`;
},
finalRecommendations: (isWorkflow: boolean, userQuery: string, selectedToolNames: string[]) => {
const focus = isWorkflow ?
'Workflow-Schritte, Best Practices, Objektivität' :
'Methodische Überlegungen, Validierung, Qualitätssicherung';
const focus = isWorkflow
? 'Knappe Workflow-Schritte & Best Practices; neutral formulieren'
: 'Methodische Überlegungen, Validierung, Qualitätssicherung';
return `Erstelle ${isWorkflow ? 'Workflow-Empfehlung' : 'methodische Überlegungen'}.
@@ -302,33 +334,31 @@ ${isWorkflow ? 'SZENARIO' : 'PROBLEM'}: "${userQuery}"
AUSGEWÄHLT: ${selectedToolNames.join(', ')}${selectedToolNames.length > 5 ? '...' : ''}
Fokus: ${focus}
Antwort: Fließtext ohne Listen, max ${isWorkflow ? '100' : '80'} Wörter.`;
Antwort: Fließtext, max ${isWorkflow ? '100' : '80'} Wörter. Keine Liste.`;
}
} as const;
export function getPrompt(key: 'enhancementQuestions', input: string): string;
export function getPrompt(key: 'toolSelection', mode: string, userQuery: string, maxSelectedItems: number): string;
export function getPrompt(key: 'toolSelectionWithData', basePrompt: string, toolsToSend: any[], conceptsToSend: any[]): string;
export function getPrompt(key: 'scenarioAnalysis', isWorkflow: boolean, userQuery: string): string;
export function getPrompt(key: 'investigationApproach', isWorkflow: boolean, userQuery: string): string;
export function getPrompt(key: 'criticalConsiderations', isWorkflow: boolean, userQuery: string): string;
export function getPrompt(key: 'phaseToolSelection', userQuery: string, phase: any, phaseTools: any[]): string;
export function getPrompt(key: 'toolEvaluation', userQuery: string, tool: any, rank: number, taskRelevance: number): string;
export function getPrompt(key: 'toolEvaluation', userQuery: string, tool: any, rank: number): string;
export function getPrompt(key: 'backgroundKnowledgeSelection', userQuery: string, mode: string, selectedToolNames: string[], availableConcepts: any[]): string;
export function getPrompt(key: 'phaseCompletionReasoning', originalQuery: string, phase: any, selectedToolName: string, tool: any, completionContext: string): string;
export function getPrompt(key: 'finalRecommendations', isWorkflow: boolean, userQuery: string, selectedToolNames: string[]): string;
export function getPrompt(key: 'generatePhaseCompletionPrompt', originalQuery: string, phase: any, candidateTools: any[], candidateConcepts: any[]): string;
export function getPrompt(promptKey: keyof typeof AI_PROMPTS, ...args: any[]): string {
try {
const promptFunction = AI_PROMPTS[promptKey];
if (typeof promptFunction === 'function') {
return (promptFunction as (...args: any[]) => string)(...args);
} else {
console.error(`[PROMPTS] Invalid prompt key: ${promptKey}`);
return 'Error: Invalid prompt configuration';
}
} catch (error) {
console.error(`[PROMPTS] Error generating prompt ${promptKey}:`, error);
const f = AI_PROMPTS[promptKey];
if (typeof f === 'function') return (f as (...a: any[]) => string)(...args);
console.error(`[PROMPTS] Invalid prompt key: ${promptKey}`);
return 'Error: Invalid prompt configuration';
} catch (err) {
console.error(`[PROMPTS] Error generating prompt ${promptKey}:`, err);
return 'Error: Failed to generate prompt';
}
}

View File

@@ -57,6 +57,44 @@ tools:
accessType: download
license: Apache-2.0
knowledgebase: false
- name: Thorium
icon: ⚛️
type: software
description: >-
CISAs portable Hybrid-Analyse-Tool für die schnelle Untersuchung von Windows-
Systemen auf bösartige Aktivitäten. Scannt mit kuratierten YARA- und
Sigma-Regeln Arbeitsspeicher, Prozesse, Dateisystem, Netzwerkverbindungen und
Systemprotokolle. Ideal für schnelle Triage im Incident Response, sowohl live als auch
auf gemounteten Images. Die Ausgabe erfolgt in strukturierten JSON-Reports.
domains:
- incident-response
- malware-analysis
phases:
- examination
- analysis
platforms:
- Linux
related_software:
- Loki
- YARA
- Velociraptor
skillLevel: intermediate
accessType: download
url: https://github.com/cisagov/thorium
license: MIT
knowledgebase: false
tags:
- cli
- triage
- fast-scan
- ioc-matching
- yara-scan
- sigma-rules
- memory-analysis
- process-analysis
- filesystem-scanning
- log-analysis
- portable
- name: Volatility 3
type: software
description: >-

View File

@@ -184,7 +184,7 @@ import BaseLayout from '../layouts/BaseLayout.astro';
<div style="display: grid; gap: 1.25rem;">
<div style="background-color: var(--color-bg-secondary); padding: 1.25rem; border-radius: 0.5rem;">
<h4 style="margin: 0 0 0.5rem 0; color: var(--color-accent);">🔍 Vorschläge</h4>
<h4 style="margin: 0 0 0.5rem 0; color: var(--color-accent);">📝 Vorschläge</h4>
<p style="margin: 0;">
Du hast eine Idee, wie wir den Hub erweitern können? Reiche deinen Vorschlag unkompliziert
über unsere <a href="/contribute#vorschlaege">/contribute</a>-Seite ein.
@@ -210,15 +210,54 @@ import BaseLayout from '../layouts/BaseLayout.astro';
<svg width="16" height="16" viewBox="0 0 24 24" fill="currentColor">
<path d="M12 0c-6.626 0-12 5.373-12 12 0 5.302 3.438 9.8 8.207 11.387.599.111.793-.261.793-.577v-2.234c-3.338.726-4.033-1.416-4.033-1.416-.546-1.387-1.333-1.756-1.333-1.756-1.089-.745.083-.729.083-.729 1.205.084 1.839 1.237 1.839 1.237 1.07 1.834 2.807 1.304 3.492.997.107-.775.418-1.305.762-1.604-2.665-.305-5.467-1.334-5.467-5.931 0-1.311.469-2.381 1.236-3.221-.124-.303-.535-1.524.117-3.176 0 0 1.008-.322 3.301 1.23.957-.266 1.983-.399 3.003-.404 1.02.005 2.047.138 3.006.404 2.291-1.552 3.297-1.23 3.297-1.23.653 1.653.242 2.874.118 3.176.77.84 1.235 1.911 1.235 3.221 0 4.609-2.807 5.624-5.479 5.921.43.372.823 1.102.823 2.222v3.293c0 .319.192.694.801.576 4.765-1.589 8.199-6.086 8.199-11.386 0-6.627-5.373-12-12-12z" />
</svg>
GitRepository besuchen
Git-Repository besuchen
</a>
</div>
<!-- Lightning Support Section with simple-boost integration -->
<div style="background-color: var(--color-bg-secondary); padding: 1.25rem; border-radius: 0.5rem;">
<h4 style="margin: 0 0 0.5rem 0; color: var(--color-accent);">⚡ Unterstützung</h4>
<p style="margin: 0;">
Kleine Spenden zur Infrastruktur-Finanzierung nehme ich auch gerne an, wenn es sein muss.
Fragt einfach nach der Lightning-Adresse oder BTC-Adresse!
<h4 style="margin: 0 0 0.75rem 0; color: var(--color-accent); display: flex; align-items: center; gap: 0.5rem;">
<svg width="20" height="20" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2">
<polygon points="13,2 3,14 12,14 11,22 21,10 12,10 13,2"/>
</svg>
⚡ Unterstützung
</h4>
<p style="margin: 0 0 1rem 0; font-size: 0.875rem; line-height: 1.5;">
Kleine Spenden zur Server-Finanzierung sind willkommen.
</p>
<div style="margin-bottom: 1rem;">
<!-- Simple EUR Payment -->
<div style="display: flex; gap: 0.75rem; align-items: center; justify-content: center; max-width: 300px; margin: 0 auto;">
<input
type="number"
id="eur-amount"
min="0.01"
step="0.01"
placeholder="0,50"
value="0.5"
style="width: 80px; padding: 0.5rem; border: 1px solid var(--color-border); border-radius: 0.375rem; font-size: 0.875rem; text-align: center;">
<span style="font-size: 0.875rem; color: var(--color-text-secondary);">€</span>
<simple-boost
id="eur-boost"
class="bootstrap"
nwc="nostr+walletconnect://4fe05896e1faf09d1902ea24ef589f65a9606d1710420a9574ce331e3c7f486b?relay=wss://nostr.mikoshi.de&secret=bdfc861fe71e8d9e375b7a2484052e92def7caf4b317d8f6537b784d3cd6eb3b"
amount="0.5"
currency="eur"
memo="ForensicPathways Unterstützung - Vielen Dank!"
style="background-color: var(--color-accent); color: white; border: none; border-radius: 0.375rem; padding: 0.5rem 1rem; font-size: 0.875rem; cursor: pointer;">
⚡ Senden
</simple-boost>
</div>
</div>
<div style="margin-top: 1rem; padding: 0.75rem; background-color: var(--color-bg); border-radius: 0.375rem; border-left: 3px solid var(--color-accent);">
<p style="margin: 0; font-size: 0.75rem; color: var(--color-text-secondary); line-height: 1.4; text-align: center;">
<strong>⚡ Lightning-Unterstützung:</strong> Betrag eingeben und senden.
Benötigt eine Lightning-Wallet wie <a href="https://getalby.com" target="_blank" rel="noopener" style="color: var(--color-accent);">Alby</a> oder
<a href="https://phoenix.acinq.co" target="_blank" rel="noopener" style="color: var(--color-accent);">Phoenix</a>.
</p>
</div>
</div>
</div>
</div>
@@ -232,3 +271,69 @@ import BaseLayout from '../layouts/BaseLayout.astro';
</div>
</section>
</BaseLayout>
<script>
// TODO: cleanup
import('simple-boost').then(() => {
console.log('Simple-boost loaded successfully from local dependencies');
setupDynamicAmounts();
}).catch(error => {
console.error('Failed to load simple-boost:', error);
const script = document.createElement('script');
script.type = 'module';
script.src = '/node_modules/simple-boost/dist/simple-boost.js';
script.onload = () => {
console.log('Simple-boost fallback loaded');
setupDynamicAmounts();
};
script.onerror = () => console.error('Simple-boost fallback failed');
document.head.appendChild(script);
});
function setupDynamicAmounts() {
const eurBoost = document.getElementById('eur-boost');
const eurInput = document.getElementById('eur-amount') as HTMLInputElement;
if (eurBoost && eurInput) {
eurBoost.addEventListener('click', (e) => {
const amount = parseFloat(eurInput.value) || 0.5;
eurBoost.setAttribute('amount', amount.toString());
console.log('EUR amount set to:', amount);
});
eurInput.addEventListener('input', () => {
const amount = parseFloat(eurInput.value) || 0.5;
eurBoost.setAttribute('amount', amount.toString());
});
}
}
</script>
<style>
simple-boost {
--simple-boost-primary: var(--color-warning);
--simple-boost-primary-hover: var(--color-accent);
--simple-boost-text: white;
transition: all 0.2s ease;
}
simple-boost:hover {
transform: translateY(-1px);
box-shadow: 0 4px 8px rgba(0,0,0,0.15) !important;
}
simple-boost .simple-boost-button {
display: flex;
align-items: center;
gap: 0.5rem;
font-family: inherit;
font-size: 0.875rem;
}
/* Loading state styling */
simple-boost[loading] {
opacity: 0.7;
cursor: not-allowed;
}
</style>

View File

@@ -9,8 +9,8 @@ export const GET: APIRoute = async () => {
await embeddingsService.waitForInitialization();
const stats = embeddingsService.getStats();
const status = stats.enabled && stats.initialized ? 'ready' :
stats.enabled && !stats.initialized ? 'initializing' : 'disabled';
const status = stats.initialized ? 'ready' :
!stats.initialized ? 'initializing' : 'disabled';
console.log(`[EMBEDDINGS-STATUS-API] Service status: ${status}, stats:`, stats);

View File

@@ -5,13 +5,53 @@ import { apiError, apiServerError, createAuthErrorResponse } from '../../../util
import { enqueueApiCall } from '../../../utils/rateLimitedQueue.js';
import { aiService } from '../../../utils/aiService.js';
import { JSONParser } from '../../../utils/jsonUtils.js';
import { getPrompt } from '../../../config/prompts.js';
export const prerender = false;
const rateLimitStore = new Map<string, { count: number; resetTime: number }>();
const RATE_LIMIT_WINDOW = 60 * 1000;
const RATE_LIMIT_MAX = 5;
const RATE_LIMIT_WINDOW_MS =
Number.isFinite(parseInt(process.env.RATE_LIMIT_WINDOW_MS ?? '', 10))
? parseInt(process.env.RATE_LIMIT_WINDOW_MS!, 10)
: 60_000;
const RATE_LIMIT_MAX =
Number.isFinite(parseInt(process.env.AI_RATE_LIMIT_MAX_REQUESTS ?? '', 10))
? parseInt(process.env.AI_RATE_LIMIT_MAX_REQUESTS!, 10)
: 5;
const INPUT_MIN_CHARS = 40;
const INPUT_MAX_CHARS = 1000;
const Q_MIN_LEN = 15;
const Q_MAX_LEN = 160;
const Q_MAX_COUNT = 3;
const AI_TEMPERATURE = 0.3;
const CLEANER_TEMPERATURE = 0.0;
const rateLimitStore = new Map<string, { count: number; resetTime: number }>();
function checkRateLimit(userId: string): boolean {
const now = Date.now();
const entry = rateLimitStore.get(userId);
if (!entry || now > entry.resetTime) {
rateLimitStore.set(userId, { count: 1, resetTime: now + RATE_LIMIT_WINDOW_MS });
return true;
}
if (entry.count >= RATE_LIMIT_MAX) return false;
entry.count++;
return true;
}
function cleanupExpiredRateLimits(): void {
const now = Date.now();
for (const [userId, entry] of rateLimitStore.entries()) {
if (now > entry.resetTime) rateLimitStore.delete(userId);
}
}
setInterval(cleanupExpiredRateLimits, 5 * 60 * 1000);
/**
* Helpers
*/
function sanitizeInput(input: string): string {
return input
.replace(/```[\s\S]*?```/g, '[CODE_BLOCK_REMOVED]')
@@ -19,79 +59,24 @@ function sanitizeInput(input: string): string {
.replace(/\b(system|assistant|user)\s*[:]/gi, '[ROLE_REMOVED]')
.replace(/\b(ignore|forget|disregard)\s+(previous|all|your)\s+(instructions?|context|rules?)/gi, '[INSTRUCTION_REMOVED]')
.trim()
.slice(0, 1000);
.slice(0, INPUT_MAX_CHARS);
}
function checkRateLimit(userId: string): boolean {
const now = Date.now();
const userLimit = rateLimitStore.get(userId);
if (!userLimit || now > userLimit.resetTime) {
rateLimitStore.set(userId, { count: 1, resetTime: now + RATE_LIMIT_WINDOW });
return true;
}
if (userLimit.count >= RATE_LIMIT_MAX) {
return false;
}
userLimit.count++;
return true;
}
function cleanupExpiredRateLimits(): void {
const now = Date.now();
for (const [userId, limit] of rateLimitStore.entries()) {
if (now > limit.resetTime) {
rateLimitStore.delete(userId);
}
}
}
setInterval(cleanupExpiredRateLimits, 5 * 60 * 1000);
function createEnhancementPrompt(input: string): string {
return `Sie sind ein DFIR-Experte mit Spezialisierung auf forensische Methodik. Ein Nutzer beschreibt ein Szenario oder Problem. Analysieren Sie die Eingabe auf Vollständigkeit für eine wissenschaftlich fundierte Untersuchung.
ANALYSIEREN SIE DIESE FORENSISCHEN KATEGORIEN:
1. **Incident Context**: Was ist passiert? Welche Angriffsvektoren oder technischen Probleme liegen vor?
2. **Affected Systems**: Welche spezifischen Technologien/Plattformen sind betroffen? (Windows/Linux/ICS/SCADA/Mobile/Cloud/Network Infrastructure)
3. **Available Evidence**: Welche forensischen Datenquellen stehen zur Verfügung? (RAM-Dumps, Disk-Images, Log-Files, Network-Captures, Registry-Hives)
4. **Investigation Objectives**: Was soll erreicht werden? (IOC-Extraktion, Timeline-Rekonstruktion, Attribution, Impact-Assessment)
5. **Timeline Constraints**: Wie zeitkritisch ist die Untersuchung?
6. **Legal & Compliance**: Rechtliche Anforderungen, Chain of Custody, Compliance-Rahmen (DSGVO, sector-specific regulations)
7. **Technical Constraints**: Verfügbare Ressourcen, Skills, Infrastrukturbeschränkungen
WENN die Beschreibung alle kritischen forensischen Aspekte abdeckt: Geben Sie eine leere Liste [] zurück.
WENN wichtige Details fehlen: Formulieren Sie 2-3 präzise Fragen, die die kritischsten Lücken für eine wissenschaftlich fundierte Analyse schließen.
QUALITÄTSKRITERIEN FÜR FRAGEN:
- Forensisch spezifisch, nicht allgemein (NICHT: "Mehr Details?")
- Methodisch relevant (NICHT: "Wann passierte das?")
- Priorisiert nach Auswirkung auf die Untersuchungsqualität
- Die Frage soll maximal 20 Wörter umfassen
ANTWORTFORMAT (NUR JSON, KEIN ZUSÄTZLICHER TEXT):
[
"spezifische Frage 1?",
"spezifische Frage 2?",
"spezifische Frage 3?"
]
NUTZER-EINGABE:
${input}
`.trim();
function stripJsonFences(s: string): string {
return s.replace(/^```json\s*/i, '')
.replace(/^```\s*/i, '')
.replace(/\s*```\s*$/, '')
.trim();
}
/**
* Handler
*/
export const POST: APIRoute = async ({ request }) => {
try {
const authResult = await withAPIAuth(request, 'ai');
if (!authResult.authenticated) {
return createAuthErrorResponse();
}
const userId = authResult.userId;
const auth = await withAPIAuth(request, 'ai');
if (!auth.authenticated) return createAuthErrorResponse();
const userId = auth.userId;
if (!checkRateLimit(userId)) {
return apiError.rateLimit('Enhancement rate limit exceeded');
@@ -100,61 +85,38 @@ export const POST: APIRoute = async ({ request }) => {
const body = await request.json();
const { input } = body;
if (!input || typeof input !== 'string' || input.length < 40) {
return apiError.badRequest('Input too short for enhancement (minimum 40 characters)');
if (!input || typeof input !== 'string' || input.length < INPUT_MIN_CHARS) {
return apiError.badRequest(`Input too short for enhancement (minimum ${INPUT_MIN_CHARS} characters)`);
}
const sanitizedInput = sanitizeInput(input);
if (sanitizedInput.length < 40) {
if (sanitizedInput.length < INPUT_MIN_CHARS) {
return apiError.badRequest('Input too short after sanitization');
}
const systemPrompt = createEnhancementPrompt(sanitizedInput);
const taskId = `enhance_${userId}_${Date.now()}_${Math.random().toString(36).substr(2, 4)}`;
const taskId = `enhance_${userId}_${Date.now()}_${Math.random().toString(36).slice(2, 6)}`;
const questionsPrompt = getPrompt('enhancementQuestions', sanitizedInput);
console.log(`[ENHANCE-API] Processing enhancement request for user: ${userId}`);
const aiResponse = await enqueueApiCall(() =>
aiService.callAI(systemPrompt, {
temperature: 0.7
}), taskId);
const aiResponse = await enqueueApiCall(
() => aiService.callAI(questionsPrompt, { temperature: AI_TEMPERATURE }),
taskId
);
if (!aiResponse.content) {
if (!aiResponse?.content) {
return apiServerError.unavailable('No enhancement response');
}
let questions;
try {
const cleanedContent = aiResponse.content
.replace(/^```json\s*/i, '')
.replace(/\s*```\s*$/, '')
.trim();
let parsed: unknown = JSONParser.safeParseJSON(stripJsonFences(aiResponse.content), null);
questions = JSONParser.safeParseJSON(cleanedContent, []);
if (!Array.isArray(questions)) {
throw new Error('Response is not an array');
}
questions = questions
.filter(q => typeof q === 'string' && q.length > 20 && q.length < 200)
.filter(q => q.includes('?'))
.filter(q => {
const forensicsTerms = ['forensisch', 'log', 'dump', 'image', 'artefakt', 'evidence', 'incident', 'system', 'netzwerk', 'zeitraum', 'verfügbar'];
const lowerQ = q.toLowerCase();
return forensicsTerms.some(term => lowerQ.includes(term));
})
.map(q => q.trim())
.slice(0, 3);
if (questions.length === 0) {
questions = [];
}
} catch (error) {
console.error('[ENHANCE-API] Failed to parse enhancement response:', aiResponse.content);
questions = [];
}
let questions: string[] = Array.isArray(parsed) ? parsed : [];
questions = questions
.filter(q => typeof q === 'string')
.map(q => q.trim())
.filter(q => q.endsWith('?'))
.filter(q => q.length >= Q_MIN_LEN && q.length <= Q_MAX_LEN)
.slice(0, Q_MAX_COUNT);
console.log(`[ENHANCE-API] User: ${userId}, Questions generated: ${questions.length}, Input length: ${sanitizedInput.length}`);
@@ -168,8 +130,8 @@ export const POST: APIRoute = async ({ request }) => {
headers: { 'Content-Type': 'application/json' }
});
} catch (error) {
console.error('[ENHANCE-API] Enhancement error:', error);
} catch (err) {
console.error('[ENHANCE-API] Enhancement error:', err);
return apiServerError.internal('Enhancement processing failed');
}
};

View File

@@ -37,13 +37,6 @@ export const POST: APIRoute = async ({ request }) => {
const { embeddingsService } = await import('../../../utils/embeddings.js');
if (!embeddingsService.isEnabled()) {
return new Response(
JSON.stringify({ success: false, error: 'Semantic search not available' }),
{ status: 400, headers: { 'Content-Type': 'application/json' } }
);
}
await embeddingsService.waitForInitialization();
const similarItems = await embeddingsService.findSimilar(

View File

@@ -1,31 +1,36 @@
/* PALETTE OPTION 1: BLUEPRINT & AMBER */
:root {
/* Light Theme Colors */
--color-bg: #fff;
--color-bg-secondary: #f8fafc;
--color-bg-tertiary: #e2e8f0;
--color-text: #1e293b;
--color-text-secondary: #64748b;
--color-border: #cbd5e1;
--color-primary: #2563eb;
--color-primary-hover: #1d4ed8;
--color-accent: #059669;
--color-accent-hover: #047857;
--color-warning: #d97706;
--color-error: #dc2626;
/* Light Theme */
--color-bg: #ffffff;
--color-bg-secondary: #f1f5f9; /* Slate 100 */
--color-bg-tertiary: #e2e8f0; /* Slate 200 */
--color-text: #0f172a; /* Slate 900 */
--color-text-secondary: #475569; /* Slate 600 */
--color-border: #cbd5e1; /* Slate 300 */
--color-hosted: #7c3aed;
--color-hosted-bg: #f3f0ff;
--color-oss: #059669;
--color-oss-bg: #ecfdf5;
--color-method: #0891b2;
--color-method-bg: #f0f9ff;
--color-concept: #ea580c;
--color-primary: #334155; /* Slate 700 - A strong, serious primary */
--color-primary-hover: #1e293b; /* Slate 800 */
--color-accent: #b45309; /* A sharp, focused amber for highlights */
--color-accent-hover: #92400e;
--color-warning: #d97706;
--color-error: #be123c; /* A deeper, more serious red */
/* Card/Tag Category Colors */
--color-hosted: #4f46e5; /* Indigo */
--color-hosted-bg: #eef2ff;
--color-oss: #0d9488; /* Teal */
--color-oss-bg: #f0fdfa;
--color-method: #0891b2; /* Cyan */
--color-method-bg: #ecfeff;
--color-concept: #c2410c; /* Orange */
--color-concept-bg: #fff7ed;
/* Shadows */
--shadow-sm: 0 1px 2px 0 rgb(0 0 0 / 5%);
--shadow-md: 0 4px 6px -1px rgb(0 0 0 / 10%);
--shadow-lg: 0 10px 15px -3px rgb(0 0 0 / 10%);
/* Shadows (Crisper) */
--shadow-sm: 0 1px 2px 0 rgb(0 0 0 / 6%);
--shadow-md: 0 3px 5px -1px rgb(0 0 0 / 8%);
--shadow-lg: 0 8px 12px -3px rgb(0 0 0 / 10%);
/* Transitions */
--transition-fast: all 0.2s ease;
@@ -33,29 +38,35 @@
}
[data-theme="dark"] {
--color-bg: #0f172a;
--color-bg-secondary: #1e293b;
--color-bg-tertiary: #334155;
--color-text: #f1f5f9;
--color-text-secondary: #94a3b8;
--color-border: #475569;
--color-primary: #3b82f6;
--color-primary-hover: #60a5fa;
--color-accent: #10b981;
--color-accent-hover: #34d399;
--color-warning: #f59e0b;
--color-error: #f87171;
/* Dark Theme */
--color-bg: #0f172a; /* Slate 900 */
--color-bg-secondary: #1e293b; /* Slate 800 */
--color-bg-tertiary: #334155; /* Slate 700 */
--color-text: #f1f5f9; /* Slate 100 */
--color-text-secondary: #94a3b8; /* Slate 400 */
--color-border: #475569; /* Slate 600 */
--color-hosted: #a855f7;
--color-hosted-bg: #2e1065;
--color-oss: #10b981;
--color-oss-bg: #064e3b;
--color-method: #0891b2;
--color-primary: #64748b; /* Slate 500 */
--color-primary-hover: #94a3b8; /* Slate 400 */
--color-accent: #f59e0b; /* A brighter amber for dark mode contrast */
--color-accent-hover: #fbbf24;
--color-warning: #f59e0b;
--color-error: #f43f5e;
/* Card/Tag Category Colors */
--color-hosted: #818cf8; /* Indigo */
--color-hosted-bg: #3730a3;
--color-oss: #2dd4bf; /* Teal */
--color-oss-bg: #115e59;
--color-method: #22d3ee; /* Cyan */
--color-method-bg: #164e63;
--color-concept: #f97316;
--color-concept: #fb923c; /* Orange */
--color-concept-bg: #7c2d12;
--shadow-sm: 0 1px 2px 0 rgb(0 0 0 / 30%);
--shadow-md: 0 4px 6px -1px rgb(0 0 0 / 40%);
--shadow-lg: 0 10px 15px -3px rgb(0 0 0 / 50%);
/* Shadows (Subtler for dark mode) */
--shadow-sm: 0 1px 2px 0 rgb(0 0 0 / 20%);
--shadow-md: 0 4px 6px -1px rgb(0 0 0 / 30%);
--shadow-lg: 0 10px 15px -3px rgb(0 0 0 / 40%);
}

View File

@@ -470,15 +470,36 @@ class AIPipeline {
pipelineStart: number,
toolsDataHash: string
): Promise<{ completed: number; failed: number }> {
const topTools = context.filteredData.tools.slice(0, 3);
const candidates = context.filteredData.tools || [];
if (!Array.isArray(candidates) || candidates.length === 0) {
return { completed: completedTasks, failed: failedTasks };
}
for (let i = 0; i < topTools.length; i++) {
const evaluationResult = await this.evaluateSpecificTool(context, topTools[i], i + 1, pipelineStart, toolsDataHash);
for (let i = 0; i < candidates.length; i++) {
const evaluationResult = await this.evaluateSpecificTool(context, candidates[i], i + 1, pipelineStart, toolsDataHash);
if (evaluationResult.success) completedTasks++; else failedTasks++;
this.trackTokenUsage(evaluationResult.aiUsage);
await this.delay(this.config.microTaskDelay);
}
if (Array.isArray(context.selectedTools) && context.selectedTools.length > 0) {
context.selectedTools.sort((a: any, b: any) => {
const ar = typeof a.taskRelevance === 'number' ? a.taskRelevance : -1;
const br = typeof b.taskRelevance === 'number' ? b.taskRelevance : -1;
if (br !== ar) return br - ar;
const aLen = (a.justification || '').length;
const bLen = (b.justification || '').length;
if (bLen !== aLen) return bLen - aLen;
const aRank = a.tool?.evaluation?.rank ?? Number.MAX_SAFE_INTEGER;
const bRank = b.tool?.evaluation?.rank ?? Number.MAX_SAFE_INTEGER;
return aRank - bRank;
});
context.selectedTools = context.selectedTools.slice(0, 3);
}
return { completed: completedTasks, failed: failedTasks };
}
@@ -849,68 +870,108 @@ class AIPipeline {
toolsDataHash: string
): Promise<MicroTaskResult> {
const taskStart = Date.now();
const existingSelection = context.selectedTools?.find((st: any) => st.tool && st.tool.name === tool.name);
const originalTaskRelevance = existingSelection?.taskRelevance || 70;
const moderatedTaskRelevance = this.moderateTaskRelevance(originalTaskRelevance);
const priority = this.derivePriorityFromScore(moderatedTaskRelevance);
const prompt = getPrompt('toolEvaluation', context.userQuery, tool, rank, moderatedTaskRelevance);
const prompt = getPrompt('toolEvaluation', context.userQuery, tool, rank);
const result = await this.callMicroTaskAI(prompt, context, 'tool-evaluation');
if (result.success) {
const evaluation = JSONParser.safeParseJSON(result.content, {
detailed_explanation: 'Evaluation failed',
implementation_approach: '',
pros: [],
limitations: [],
alternatives: ''
});
if (!result.success) {
return result;
}
this.addToolToSelection(context, {
...tool,
evaluation: {
...evaluation,
rank,
task_relevance: moderatedTaskRelevance
}
}, 'evaluation', priority, evaluation.detailed_explanation, moderatedTaskRelevance, evaluation.limitations);
const evaluation = JSONParser.safeParseJSON(result.content, null);
const responseConfidence = auditService.calculateAIResponseConfidence(
result.content,
{ min: 200, max: 800 },
'tool-evaluation'
);
const finalConfidence = Math.max(responseConfidence, moderatedTaskRelevance);
const aiProvided = evaluation && typeof evaluation.taskRelevance === 'number' && Number.isFinite(evaluation.taskRelevance)
? Math.round(evaluation.taskRelevance)
: null;
if (aiProvided === null) {
auditService.addAIDecision(
'tool-evaluation',
prompt,
result.content,
finalConfidence,
`Bewertete Tool "${tool.name}" (Rang ${rank}) - Analysierte Eignung für spezifische Aufgabenstellung mit Fokus auf praktische Anwendbarkeit und methodische Integration`,
0,
`Bewertung für "${tool.name}" ignoriert: fehlender/ungültiger taskRelevance`,
taskStart,
{
toolsDataHash: toolsDataHash,
toolsDataHash,
microTaskType: 'tool-evaluation',
toolName: tool.name,
toolType: tool.type,
rank,
originalTaskRelevance,
moderatedTaskRelevance,
responseConfidence,
finalConfidence,
moderationApplied: originalTaskRelevance !== moderatedTaskRelevance,
evaluationParsed: !!evaluation.detailed_explanation,
prosCount: evaluation.pros?.length || 0,
limitationsCount: evaluation.limitations?.length || 0,
evaluationParsed: false,
decisionBasis: 'ai-analysis',
aiModel: aiService.getConfig().model,
...result.aiUsage
...(result.aiUsage || {})
}
);
return result;
}
const moderatedTaskRelevance = this.moderateTaskRelevance(aiProvided);
const priority = this.derivePriorityFromScore(moderatedTaskRelevance);
const detailed_explanation = String(evaluation?.detailed_explanation || '').trim();
const implementation_approach = String(evaluation?.implementation_approach || '').trim();
const pros = Array.isArray(evaluation?.pros) ? evaluation.pros : [];
const limitations = Array.isArray(evaluation?.limitations) ? evaluation.limitations : [];
const alternatives = String(evaluation?.alternatives || '').trim();
this.addToolToSelection(
context,
{
...tool,
evaluation: {
detailed_explanation,
implementation_approach,
pros,
limitations,
alternatives,
rank,
task_relevance: moderatedTaskRelevance
}
},
'evaluation',
priority,
detailed_explanation,
moderatedTaskRelevance,
limitations
);
const responseConfidence = auditService.calculateAIResponseConfidence(
result.content,
{ min: 200, max: 800 },
'tool-evaluation'
);
const finalConfidence = Math.max(responseConfidence, moderatedTaskRelevance);
auditService.addAIDecision(
'tool-evaluation',
prompt,
result.content,
finalConfidence,
`Bewertete Tool "${tool.name}" (Rang ${rank}) AI-Score ${aiProvided}, moderiert ${moderatedTaskRelevance}`,
taskStart,
{
toolsDataHash,
microTaskType: 'tool-evaluation',
toolName: tool.name,
toolType: tool.type,
rank,
aiProvidedTaskRelevance: aiProvided,
moderatedTaskRelevance,
responseConfidence,
finalConfidence,
moderationApplied: aiProvided !== moderatedTaskRelevance,
evaluationParsed: true,
prosCount: pros.length,
limitationsCount: limitations.length,
decisionBasis: 'ai-analysis',
aiModel: aiService.getConfig().model,
...(result.aiUsage || {})
}
);
return result;
}

View File

@@ -263,10 +263,6 @@ class EmbeddingsService {
}
async waitForInitialization(): Promise<void> {
/*if (!this.config.enabled) {
return Promise.resolve();
}*/
if (this.isInitialized) {
return Promise.resolve();
}

View File

@@ -12,14 +12,13 @@ export interface ToolSelectionConfig {
similarityThreshold: number;
embeddingSelectionLimit: number;
embeddingConceptsLimit: number;
noEmbeddingsToolLimit: number;
noEmbeddingsConceptLimit: number;
embeddingsMinTools: number;
embeddingsMaxReductionRatio: number;
methodSelectionRatio: number;
softwareSelectionRatio: number;
}
export interface SelectionContext {
userQuery: string;
mode: string;
@@ -51,14 +50,11 @@ class ToolSelector {
similarityThreshold: this.getEnvFloat('AI_SIMILARITY_THRESHOLD', 0.3),
embeddingSelectionLimit: this.getEnvInt('AI_EMBEDDING_SELECTION_LIMIT', 30),
embeddingConceptsLimit: this.getEnvInt('AI_EMBEDDING_CONCEPTS_LIMIT', 15),
noEmbeddingsToolLimit: this.getEnvInt('AI_NO_EMBEDDINGS_TOOL_LIMIT', 25),
noEmbeddingsConceptLimit: this.getEnvInt('AI_NO_EMBEDDINGS_CONCEPT_LIMIT', 10),
embeddingsMinTools: this.getEnvInt('AI_EMBEDDINGS_MIN_TOOLS', 8),
embeddingsMaxReductionRatio: this.getEnvFloat('AI_EMBEDDINGS_MAX_REDUCTION_RATIO', 0.75),
methodSelectionRatio: this.getEnvFloat('AI_METHOD_SELECTION_RATIO', 0.4),
softwareSelectionRatio: this.getEnvFloat('AI_SOFTWARE_SELECTION_RATIO', 0.5)
softwareSelectionRatio: this.getEnvFloat('AI_SOFTWARE_SELECTION_RATIO', 0.5),
};
console.log('[TOOL-SELECTOR] Initialized with config:', this.config);
}
@@ -185,43 +181,69 @@ class ToolSelector {
): Promise<ToolSelectionResult> {
console.log('[TOOL-SELECTOR] Performing AI selection');
const candidateMethods = candidateTools.filter((tool: any) => tool && tool.type === 'method');
const candidateSoftware = candidateTools.filter((tool: any) => tool && tool.type === 'software');
const candidateMethods = candidateTools.filter((t: any) => t && t.type === 'method');
const candidateSoftware = candidateTools.filter((t: any) => t && t.type === 'software');
console.log('[TOOL-SELECTOR] Candidates:', candidateMethods.length, 'methods,', candidateSoftware.length, 'software,', candidateConcepts.length, 'concepts');
console.log('[TOOL-SELECTOR] Candidates:',
candidateMethods.length, 'methods,',
candidateSoftware.length, 'software,',
candidateConcepts.length, 'concepts'
);
const methodsWithFullData = candidateMethods.map(this.createToolData);
const softwareWithFullData = candidateSoftware.map(this.createToolData);
const conceptsWithFullData = candidateConcepts.map(this.createConceptData);
const maxTools = Math.min(this.config.embeddingSelectionLimit, this.config.noEmbeddingsToolLimit);
const maxConcepts = Math.min(this.config.embeddingConceptsLimit, this.config.noEmbeddingsConceptLimit);
const methodLimit = Math.ceil(maxTools * this.config.methodSelectionRatio);
const softwareLimit = Math.floor(maxTools * this.config.softwareSelectionRatio);
const maxTools = Math.min(this.config.embeddingSelectionLimit, candidateTools.length);
const maxConcepts = Math.min(this.config.embeddingConceptsLimit, candidateConcepts.length);
const toolsToSend: any[] = [
...methodsWithFullData.slice(0, methodLimit),
...softwareWithFullData.slice(0, softwareLimit),
];
const methodRatio = Math.max(0, Math.min(1, this.config.methodSelectionRatio));
const softwareRatio = Math.max(0, Math.min(1, this.config.softwareSelectionRatio));
const remainingCapacity = maxTools - toolsToSend.length;
if (remainingCapacity > 0) {
const extraMethods = methodsWithFullData.slice(methodLimit, methodLimit + remainingCapacity);
const extraSoftware = softwareWithFullData.slice(softwareLimit, softwareLimit + (remainingCapacity - extraMethods.length));
toolsToSend.push(...extraMethods, ...extraSoftware);
let methodLimit = Math.round(maxTools * methodRatio);
let softwareLimit = Math.round(maxTools * softwareRatio);
if (methodLimit + softwareLimit > maxTools) {
const scale = maxTools / (methodLimit + softwareLimit);
methodLimit = Math.floor(methodLimit * scale);
softwareLimit = Math.floor(softwareLimit * scale);
}
const methodsPrimary = methodsWithFullData.slice(0, methodLimit);
const softwarePrimary = softwareWithFullData.slice(0, softwareLimit);
const toolsToSend: any[] = [...methodsPrimary, ...softwarePrimary];
let mIdx = methodsPrimary.length;
let sIdx = softwarePrimary.length;
while (toolsToSend.length < maxTools && (mIdx < methodsWithFullData.length || sIdx < softwareWithFullData.length)) {
const remM = methodsWithFullData.length - mIdx;
const remS = softwareWithFullData.length - sIdx;
if (remS >= remM && sIdx < softwareWithFullData.length) {
toolsToSend.push(softwareWithFullData[sIdx++]);
} else if (mIdx < methodsWithFullData.length) {
toolsToSend.push(methodsWithFullData[mIdx++]);
} else if (sIdx < softwareWithFullData.length) {
toolsToSend.push(softwareWithFullData[sIdx++]);
} else {
break;
}
}
const conceptsToSend = conceptsWithFullData.slice(0, maxConcepts);
const basePrompt = getPrompt('toolSelection', mode, userQuery, this.config.maxSelectedItems);
const prompt = getPrompt('toolSelectionWithData', basePrompt, toolsToSend, conceptsToSend);
console.log('[TOOL-SELECTOR-DEBUG] maxTools:', maxTools, 'maxConcepts:', maxConcepts);
console.log('[TOOL-SELECTOR] Sending to AI:',
toolsToSend.filter((t: any) => t.type === 'method').length, 'methods,',
toolsToSend.filter((t: any) => t.type === 'software').length, 'software,',
conceptsToSend.length, 'concepts'
);
const basePrompt = getPrompt('toolSelection', mode, userQuery, this.config.maxSelectedItems);
const prompt = getPrompt('toolSelectionWithData', basePrompt, toolsToSend, conceptsToSend);
try {
const response = await aiService.callAI(prompt);
const result = JSONParser.safeParseJSON(response.content, null);
@@ -250,7 +272,11 @@ class ToolSelector {
const selectedMethods = selectedTools.filter((t: any) => t && t.type === 'method');
const selectedSoftware = selectedTools.filter((t: any) => t && t.type === 'software');
console.log('[TOOL-SELECTOR] AI selected:', selectedMethods.length, 'methods,', selectedSoftware.length, 'software,', selectedConcepts.length, 'concepts');
console.log('[TOOL-SELECTOR] AI selected:',
selectedMethods.length, 'methods,',
selectedSoftware.length, 'software,',
selectedConcepts.length, 'concepts'
);
const confidence = confidenceScoring.calculateSelectionConfidence(
result,