restore old after-confidence-scoring

This commit is contained in:
overcuriousity
2025-08-17 11:45:53 +02:00
parent 8bba0eefa9
commit afbd8d2cd3
9 changed files with 366 additions and 286 deletions

View File

@@ -1,11 +1,11 @@
// src/utils/aiPipeline.ts - Enhanced with comprehensive audit logging
// src/utils/aiPipeline.ts - Enhanced with comprehensive audit logging and restored sophisticated logic
import { getCompressedToolsDataForAI, getDataVersion } from './dataService.js';
import { aiService } from './aiService.js';
import { toolSelector, type SelectionContext } from './toolSelector.js';
import { confidenceScoring, type AnalysisContext } from './confidenceScoring.js';
import { embeddingsService } from './embeddings.js';
import { auditService, type AuditEntry } from './auditService.js';
import { JSONParser } from './jsonUtils.js'; // FIXED: Use centralized JSON parsing
import { JSONParser } from './jsonUtils.js';
import { getPrompt } from '../config/prompts.js';
import 'dotenv/config';
@@ -13,6 +13,11 @@ interface PipelineConfig {
microTaskDelay: number;
maxContextTokens: number;
maxPromptTokens: number;
taskRelevanceModeration: {
maxInitialScore: number;
maxWithPhaseBonus: number;
moderationThreshold: number;
};
}
interface MicroTaskResult {
@@ -40,6 +45,10 @@ interface AnalysisResult {
contextContinuityUsed: boolean;
totalAITokensUsed: number;
auditEntriesGenerated: number;
aiModel: string;
toolsDataHash: string;
temperature: number;
maxTokensUsed: number;
};
}
@@ -78,10 +87,15 @@ class AIPipeline {
this.config = {
microTaskDelay: parseInt(process.env.AI_MICRO_TASK_DELAY_MS || '500', 10),
maxContextTokens: parseInt(process.env.AI_MAX_CONTEXT_TOKENS || '4000', 10),
maxPromptTokens: parseInt(process.env.AI_MAX_PROMPT_TOKENS || '1500', 10)
maxPromptTokens: parseInt(process.env.AI_MAX_PROMPT_TOKENS || '1500', 10),
taskRelevanceModeration: {
maxInitialScore: 85,
maxWithPhaseBonus: 95,
moderationThreshold: 80
}
};
console.log('[AI-PIPELINE] Initialized orchestration pipeline');
console.log('[AI-PIPELINE] Initialized orchestration pipeline with enhanced logic');
}
async processQuery(userQuery: string, mode: string): Promise<AnalysisResult> {
@@ -92,7 +106,6 @@ class AIPipeline {
console.log('[AI-PIPELINE] Starting', mode, 'analysis pipeline');
// Initialize audit trail
auditService.clearAuditTrail();
try {
@@ -111,7 +124,6 @@ class AIPipeline {
embeddingsSimilarities: new Map<string, number>()
};
// AUDIT: Pipeline initialization
auditService.addEntry(
'initialization',
'pipeline-start',
@@ -132,17 +144,15 @@ class AIPipeline {
toolsDataHash,
aiModel: aiConfig.model,
embeddingsUsed: embeddingsService.isEnabled(),
pipelineVersion: '2.0-enhanced'
pipelineVersion: '2.1-enhanced'
}
);
// Phase 1: Get intelligent tool candidates with enhanced logging
console.log('[AI-PIPELINE] Phase 1: Tool candidate selection');
const candidateSelectionStart = Date.now();
const candidateData = await toolSelector.getIntelligentCandidates(userQuery, toolsData, mode, context);
// AUDIT: Tool candidate selection
auditService.addToolSelection(
candidateData.tools.map(t => t.name),
toolsData.tools.map(t => t.name),
@@ -159,7 +169,6 @@ class AIPipeline {
context.filteredData = candidateData;
// Phase 2: Contextual analysis micro-tasks with enhanced logging
console.log('[AI-PIPELINE] Phase 2: Contextual analysis');
const analysisResult = await this.analyzeScenario(context, startTime);
@@ -177,7 +186,6 @@ class AIPipeline {
this.trackTokenUsage(considerationsResult.aiUsage);
await this.delay(this.config.microTaskDelay);
// Phase 3: Tool-specific analysis with enhanced logging
console.log('[AI-PIPELINE] Phase 3: Tool-specific analysis');
if (mode === 'workflow') {
@@ -190,7 +198,6 @@ class AIPipeline {
failedTasks = toolResults.failed;
}
// Phase 4: Knowledge and finalization with enhanced logging
console.log('[AI-PIPELINE] Phase 4: Knowledge synthesis');
const knowledgeResult = await this.selectBackgroundKnowledge(context, startTime);
@@ -202,10 +209,8 @@ class AIPipeline {
if (finalResult.success) completedTasks++; else failedTasks++;
this.trackTokenUsage(finalResult.aiUsage);
// Build final recommendation
const recommendation = this.buildRecommendation(context, mode, finalResult.content);
// AUDIT: Pipeline completion
auditService.addEntry(
'completion',
'pipeline-end',
@@ -235,7 +240,11 @@ class AIPipeline {
microTasksFailed: failedTasks,
contextContinuityUsed: true,
totalAITokensUsed: this.totalTokensUsed,
auditEntriesGenerated: auditService.getCurrentAuditTrail().length
auditEntriesGenerated: auditService.getCurrentAuditTrail().length,
aiModel: aiConfig.model,
toolsDataHash,
temperature: 0.3,
maxTokensUsed: 2500
};
console.log('[AI-PIPELINE] Pipeline completed successfully:', {
@@ -248,13 +257,13 @@ class AIPipeline {
auditEntries: processingStats.auditEntriesGenerated
});
// Finalize audit trail
const finalAuditTrail = auditService.finalizeAuditTrail();
return {
recommendation: {
...recommendation,
auditTrail: auditService.isEnabled() ? finalAuditTrail : undefined
auditTrail: auditService.isEnabled() ? finalAuditTrail : undefined,
processingStats
},
processingStats
};
@@ -262,7 +271,6 @@ class AIPipeline {
} catch (error) {
console.error('[AI-PIPELINE] Pipeline failed:', error);
// AUDIT: Pipeline failure
auditService.addEntry(
'error',
'pipeline-failure',
@@ -286,7 +294,6 @@ class AIPipeline {
): Promise<{ completed: number; failed: number }> {
const phases = toolsData.phases || [];
// Select tools for each phase with enhanced logging
for (const phase of phases) {
const phaseStart = Date.now();
const phaseTools = context.filteredData.tools.filter((tool: any) =>
@@ -295,7 +302,6 @@ class AIPipeline {
const selections = await toolSelector.selectToolsForPhase(context.userQuery, phase, phaseTools, context);
// AUDIT: Phase tool selection
auditService.addEntry(
'workflow-phase',
'phase-tool-selection',
@@ -321,21 +327,23 @@ class AIPipeline {
selections.forEach((sel: any) => {
const tool = phaseTools.find((t: any) => t && t.name === sel.toolName);
if (tool) {
const priority = this.derivePriorityFromScore(sel.taskRelevance);
this.addToolToSelection(context, tool, phase.id, priority, sel.justification, sel.taskRelevance, sel.limitations);
const moderatedTaskRelevance = this.moderateTaskRelevance(sel.taskRelevance);
const priority = this.derivePriorityFromScore(moderatedTaskRelevance);
this.addToolToSelection(context, tool, phase.id, priority, sel.justification, moderatedTaskRelevance, sel.limitations);
// AUDIT: Individual tool selection reasoning
auditService.addEntry(
'tool-reasoning',
'tool-added-to-phase',
{ toolName: tool.name, phaseId: phase.id, taskRelevance: sel.taskRelevance },
{ toolName: tool.name, phaseId: phase.id, originalTaskRelevance: sel.taskRelevance, moderatedTaskRelevance },
{ justification: sel.justification, limitations: sel.limitations },
sel.taskRelevance || 70,
moderatedTaskRelevance || 70,
phaseStart,
{
toolType: tool.type,
priority,
selectionReasoning: sel.justification
selectionReasoning: sel.justification,
moderationApplied: sel.taskRelevance !== moderatedTaskRelevance
}
);
}
@@ -345,8 +353,9 @@ class AIPipeline {
await this.delay(this.config.microTaskDelay);
}
// Complete underrepresented phases with enhanced logging
const completionResult = await this.completeUnderrepresentedPhases(context, toolsData, pipelineStart);
completedTasks += completionResult.completed;
failedTasks += completionResult.failed;
return { completed: completedTasks, failed: failedTasks };
}
@@ -369,6 +378,267 @@ class AIPipeline {
return { completed: completedTasks, failed: failedTasks };
}
private async completeUnderrepresentedPhases(
context: PipelineContext,
toolsData: any,
pipelineStart: number
): Promise<{ completed: number; failed: number }> {
const phases = toolsData.phases || [];
const selectedPhases = new Map<string, number>();
let completedTasks = 0;
let failedTasks = 0;
context.selectedTools?.forEach((st: any) => {
const count = selectedPhases.get(st.phase) || 0;
selectedPhases.set(st.phase, count + 1);
});
const underrepresentedPhases = phases.filter((phase: any) => {
const count = selectedPhases.get(phase.id) || 0;
return count <= 1;
});
if (underrepresentedPhases.length === 0) {
console.log('[AI-PIPELINE] All phases adequately represented');
return { completed: 0, failed: 0 };
}
console.log('[AI-PIPELINE] Completing underrepresented phases:', underrepresentedPhases.map((p: any) => p.id).join(', '));
auditService.addEntry(
'phase-completion',
'underrepresented-phases-detected',
{
underrepresentedPhases: underrepresentedPhases.map(p => p.id),
currentPhaseDistribution: Array.from(selectedPhases.entries())
},
{
phasesToComplete: underrepresentedPhases.length,
completionStrategy: 'semantic-search-with-ai-reasoning'
},
70,
pipelineStart,
{
totalPhases: phases.length,
adequatelyRepresented: phases.length - underrepresentedPhases.length,
completionMethod: 'sophisticated-ai-reasoning'
}
);
for (const phase of underrepresentedPhases) {
const result = await this.completePhaseWithSemanticSearchAndAI(context, phase, toolsData, pipelineStart);
if (result.success) completedTasks++; else failedTasks++;
await this.delay(this.config.microTaskDelay);
}
return { completed: completedTasks, failed: failedTasks };
}
private async completePhaseWithSemanticSearchAndAI(
context: PipelineContext,
phase: any,
toolsData: any,
pipelineStart: number
): Promise<MicroTaskResult> {
const phaseStart = Date.now();
const phaseQuery = `forensic ${phase.name.toLowerCase()} tools methods`;
console.log('[AI-PIPELINE] Phase completion for:', phase.id);
try {
const phaseResults = await embeddingsService.findSimilar(phaseQuery, 20, 0.2);
auditService.addEmbeddingsSearch(
phaseQuery,
phaseResults,
0.2,
phaseStart,
{
phaseId: phase.id,
phaseName: phase.name,
completionPurpose: 'underrepresented-phase-enhancement'
}
);
if (phaseResults.length === 0) {
console.log('[AI-PIPELINE] No semantic results for phase:', phase.id);
return {
taskType: 'phase-completion',
content: '',
processingTimeMs: Date.now() - phaseStart,
success: true
};
}
const toolsMap = new Map(toolsData.tools.map((tool: any) => [tool.name, tool]));
const conceptsMap = new Map(toolsData.concepts.map((concept: any) => [concept.name, concept]));
const phaseTools = phaseResults
.filter((result: any) => result.type === 'tool')
.map((result: any) => toolsMap.get(result.name))
.filter((tool: any): tool is NonNullable<any> =>
tool !== undefined &&
tool !== null &&
tool.phases &&
Array.isArray(tool.phases) &&
tool.phases.includes(phase.id) &&
!context.seenToolNames.has(tool.name)
)
.slice(0, 5);
const phaseConcepts = phaseResults
.filter((result: any) => result.type === 'concept')
.map((result: any) => conceptsMap.get(result.name))
.filter((concept: any): concept is NonNullable<any> => concept !== undefined && concept !== null)
.slice(0, 2);
if (phaseTools.length === 0) {
console.log('[AI-PIPELINE] No suitable tools for phase completion:', phase.id);
return {
taskType: 'phase-completion',
content: '',
processingTimeMs: Date.now() - phaseStart,
success: true
};
}
const selectionPrompt = getPrompt('generatePhaseCompletionPrompt', context.userQuery, phase, phaseTools, phaseConcepts);
const selectionResult = await this.callMicroTaskAI(selectionPrompt, context, 800, 'phase-completion-selection');
if (!selectionResult.success) {
console.error('[AI-PIPELINE] Phase completion selection failed for:', phase.id);
return {
taskType: 'phase-completion',
content: '',
processingTimeMs: Date.now() - phaseStart,
success: false,
error: 'Selection micro-task failed'
};
}
const selection = JSONParser.safeParseJSON(selectionResult.content, {
selectedTools: [],
selectedConcepts: [],
completionReasoning: ''
});
const validTools = selection.selectedTools
.map((name: string) => phaseTools.find((t: any) => t && t.name === name))
.filter((tool: any): tool is NonNullable<any> => tool !== undefined && tool !== null)
.slice(0, 2);
if (validTools.length === 0) {
console.log('[AI-PIPELINE] No valid tools selected for phase completion:', phase.id);
return {
taskType: 'phase-completion',
content: selection.completionReasoning || '',
processingTimeMs: Date.now() - phaseStart,
success: true
};
}
for (const tool of validTools) {
console.log('[AI-PIPELINE] Generating AI reasoning for phase completion tool:', tool.name);
const reasoningPrompt = getPrompt(
'phaseCompletionReasoning',
context.userQuery,
phase,
tool.name,
tool,
selection.completionReasoning || 'Nachergänzung zur Vervollständigung der Phasenabdeckung'
);
const reasoningResult = await this.callMicroTaskAI(reasoningPrompt, context, 400, 'phase-completion-reasoning');
let detailedJustification: string;
let moderatedTaskRelevance = 75;
if (reasoningResult.success && reasoningResult.content.trim()) {
detailedJustification = reasoningResult.content.trim();
moderatedTaskRelevance = this.moderateTaskRelevance(80);
} else {
detailedJustification = `Nachträglich hinzugefügt zur Vervollständigung der ${phase.name}-Phase. Die ursprüngliche KI-Auswahl war zu spezifisch und hat wichtige Tools für diese Phase übersehen.`;
moderatedTaskRelevance = this.moderateTaskRelevance(75);
}
this.addToolToSelection(
context,
tool,
phase.id,
'medium',
detailedJustification,
moderatedTaskRelevance,
['Nachträgliche Ergänzung via semantische Phasensuche mit KI-Bewertung']
);
auditService.addPhaseCompletion(
phase.id,
[tool.name],
detailedJustification,
phaseStart,
{
toolName: tool.name,
toolType: tool.type,
semanticSimilarity: phaseResults.find(r => r.name === tool.name)?.similarity,
completionReason: 'underrepresented-phase',
originalSelectionMissed: true,
aiReasoningUsed: reasoningResult.success,
moderatedTaskRelevance
}
);
console.log('[AI-PIPELINE] Added phase completion tool with AI reasoning:', tool.name);
}
return {
taskType: 'phase-completion',
content: selection.completionReasoning || '',
processingTimeMs: Date.now() - phaseStart,
success: true
};
} catch (error) {
console.error('[AI-PIPELINE] Phase completion failed for:', phase.id, error);
auditService.addEntry(
'phase-completion',
'completion-failed',
{ phaseId: phase.id, error: error.message },
{ success: false },
20,
phaseStart,
{
errorType: error.constructor.name,
phaseId: phase.id
}
);
return {
taskType: 'phase-completion',
content: '',
processingTimeMs: Date.now() - phaseStart,
success: false,
error: error.message
};
}
}
private moderateTaskRelevance(taskRelevance: number): number {
if (typeof taskRelevance !== 'number') {
return 70;
}
let moderated = Math.min(taskRelevance, this.config.taskRelevanceModeration.maxInitialScore);
if (moderated > this.config.taskRelevanceModeration.moderationThreshold) {
const excess = moderated - this.config.taskRelevanceModeration.moderationThreshold;
moderated = this.config.taskRelevanceModeration.moderationThreshold + (excess * 0.7);
}
return Math.round(Math.min(moderated, this.config.taskRelevanceModeration.maxInitialScore));
}
private async analyzeScenario(context: PipelineContext, pipelineStart: number): Promise<MicroTaskResult> {
console.log('[AI-PIPELINE] Micro-task: Scenario analysis');
const taskStart = Date.now();
@@ -386,7 +656,6 @@ class AIPipeline {
this.addToContextHistory(context, `${isWorkflow ? 'Szenario' : 'Problem'}-Analyse: ${result.content.slice(0, 200)}...`);
// AUDIT: Scenario analysis
auditService.addAIDecision(
'contextual-analysis',
prompt,
@@ -418,7 +687,6 @@ class AIPipeline {
context.investigationApproach = result.content;
this.addToContextHistory(context, `${isWorkflow ? 'Untersuchungs' : 'Lösungs'}ansatz: ${result.content.slice(0, 200)}...`);
// AUDIT: Investigation approach
auditService.addAIDecision(
'contextual-analysis',
prompt,
@@ -451,7 +719,6 @@ class AIPipeline {
context.criticalConsiderations = result.content;
this.addToContextHistory(context, `Kritische Überlegungen: ${result.content.slice(0, 200)}...`);
// AUDIT: Critical considerations
auditService.addAIDecision(
'contextual-analysis',
prompt,
@@ -479,14 +746,14 @@ class AIPipeline {
console.log('[AI-PIPELINE] Micro-task: Tool evaluation for:', tool.name);
const taskStart = Date.now();
const existingSelection = context.selectedTools?.find((st: any) => st.tool && st.tool.name === tool.name);
const taskRelevance = existingSelection?.taskRelevance || 70;
const priority = this.derivePriorityFromScore(taskRelevance);
const originalTaskRelevance = existingSelection?.taskRelevance || 70;
const moderatedTaskRelevance = this.moderateTaskRelevance(originalTaskRelevance);
const priority = this.derivePriorityFromScore(moderatedTaskRelevance);
const prompt = getPrompt('toolEvaluation', context.userQuery, tool, rank, taskRelevance);
const prompt = getPrompt('toolEvaluation', context.userQuery, tool, rank, moderatedTaskRelevance);
const result = await this.callMicroTaskAI(prompt, context, 1000, 'tool-evaluation');
if (result.success) {
// FIXED: Use centralized JSON parsing
const evaluation = JSONParser.safeParseJSON(result.content, {
detailed_explanation: 'Evaluation failed',
implementation_approach: '',
@@ -500,16 +767,15 @@ class AIPipeline {
evaluation: {
...evaluation,
rank,
task_relevance: taskRelevance
task_relevance: moderatedTaskRelevance
}
}, 'evaluation', priority, evaluation.detailed_explanation, taskRelevance, evaluation.limitations);
}, 'evaluation', priority, evaluation.detailed_explanation, moderatedTaskRelevance, evaluation.limitations);
// AUDIT: Tool evaluation
auditService.addAIDecision(
'tool-evaluation',
prompt,
result.content,
taskRelevance,
moderatedTaskRelevance,
`Evaluated tool ${tool.name} for ${context.mode} mode`,
taskStart,
{
@@ -517,7 +783,9 @@ class AIPipeline {
toolName: tool.name,
toolType: tool.type,
rank,
taskRelevance,
originalTaskRelevance,
moderatedTaskRelevance,
moderationApplied: originalTaskRelevance !== moderatedTaskRelevance,
evaluationParsed: !!evaluation.detailed_explanation,
prosCount: evaluation.pros?.length || 0,
limitationsCount: evaluation.limitations?.length || 0,
@@ -548,7 +816,6 @@ class AIPipeline {
const result = await this.callMicroTaskAI(prompt, context, 700, 'background-knowledge');
if (result.success) {
// FIXED: Use centralized JSON parsing
const selections = JSONParser.safeParseJSON(result.content, []);
if (Array.isArray(selections)) {
@@ -559,7 +826,6 @@ class AIPipeline {
relevance: sel.relevance
}));
// AUDIT: Background knowledge selection
auditService.addEntry(
'knowledge-synthesis',
'concept-selection',
@@ -596,7 +862,6 @@ class AIPipeline {
const result = await this.callMicroTaskAI(prompt, context, 350, 'final-recommendations');
if (result.success) {
// AUDIT: Final recommendations
auditService.addAIDecision(
'synthesis',
prompt,
@@ -617,152 +882,6 @@ class AIPipeline {
return result;
}
private async completeUnderrepresentedPhases(context: PipelineContext, toolsData: any, pipelineStart: number): Promise<void> {
const phases = toolsData.phases || [];
const selectedPhases = new Map<string, number>();
context.selectedTools?.forEach((st: any) => {
const count = selectedPhases.get(st.phase) || 0;
selectedPhases.set(st.phase, count + 1);
});
const underrepresentedPhases = phases.filter((phase: any) => {
const count = selectedPhases.get(phase.id) || 0;
return count <= 1;
});
if (underrepresentedPhases.length === 0) {
console.log('[AI-PIPELINE] All phases adequately represented');
return;
}
console.log('[AI-PIPELINE] Completing underrepresented phases:', underrepresentedPhases.map((p: any) => p.id).join(', '));
// AUDIT: Phase completion start
auditService.addEntry(
'phase-completion',
'underrepresented-phases-detected',
{
underrepresentedPhases: underrepresentedPhases.map(p => p.id),
currentPhaseDistribution: Array.from(selectedPhases.entries())
},
{
phasesToComplete: underrepresentedPhases.length,
completionStrategy: 'semantic-search'
},
70,
pipelineStart,
{
totalPhases: phases.length,
adequatelyRepresented: phases.length - underrepresentedPhases.length,
completionMethod: 'semantic-phase-search'
}
);
for (const phase of underrepresentedPhases) {
await this.completePhaseWithSemanticSearch(context, phase, toolsData, pipelineStart);
await this.delay(this.config.microTaskDelay);
}
}
private async completePhaseWithSemanticSearch(context: PipelineContext, phase: any, toolsData: any, pipelineStart: number): Promise<void> {
const phaseStart = Date.now();
const phaseQuery = `forensic ${phase.name.toLowerCase()} tools methods`;
console.log('[AI-PIPELINE] Phase completion for:', phase.id);
try {
const phaseResults = await embeddingsService.findSimilar(phaseQuery, 20, 0.2);
// AUDIT: Embeddings search for phase completion
auditService.addEmbeddingsSearch(
phaseQuery,
phaseResults,
0.2,
phaseStart,
{
phaseId: phase.id,
phaseName: phase.name,
completionPurpose: 'underrepresented-phase-enhancement'
}
);
if (phaseResults.length === 0) {
console.log('[AI-PIPELINE] No semantic results for phase:', phase.id);
return;
}
const toolsMap = new Map(toolsData.tools.map((tool: any) => [tool.name, tool]));
const phaseTools = phaseResults
.filter((result: any) => result.type === 'tool')
.map((result: any) => toolsMap.get(result.name))
.filter((tool: any): tool is NonNullable<any> =>
tool !== undefined &&
tool !== null &&
tool.phases &&
Array.isArray(tool.phases) &&
tool.phases.includes(phase.id) &&
!context.seenToolNames.has(tool.name)
)
.slice(0, 2);
if (phaseTools.length === 0) {
console.log('[AI-PIPELINE] No suitable tools for phase completion:', phase.id);
return;
}
// Add tools with justification and audit each addition
for (const tool of phaseTools) {
const justification = `Nachträglich hinzugefügt zur Vervollständigung der ${phase.name}-Phase. Die ursprüngliche KI-Auswahl war zu spezifisch und hat wichtige Tools für diese Phase übersehen.`;
this.addToolToSelection(
context,
tool,
phase.id,
'medium',
justification,
75,
['Nachträgliche Ergänzung via semantische Phasensuche']
);
// AUDIT: Phase completion tool addition
auditService.addPhaseCompletion(
phase.id,
[tool.name],
justification,
phaseStart,
{
toolName: tool.name,
toolType: tool.type,
semanticSimilarity: phaseResults.find(r => r.name === tool.name)?.similarity,
completionReason: 'underrepresented-phase',
originalSelectionMissed: true
}
);
console.log('[AI-PIPELINE] Added phase completion tool:', tool.name);
}
} catch (error) {
console.error('[AI-PIPELINE] Phase completion failed for:', phase.id, error);
// AUDIT: Phase completion failure
auditService.addEntry(
'phase-completion',
'completion-failed',
{ phaseId: phase.id, error: error.message },
{ success: false },
20,
phaseStart,
{
errorType: error.constructor.name,
phaseId: phase.id
}
);
}
}
private buildRecommendation(context: PipelineContext, mode: string, finalContent: string): any {
const isWorkflow = mode === 'workflow';
@@ -795,7 +914,6 @@ class AIPipeline {
st.limitations || []
);
// AUDIT: Confidence calculation for each tool
auditService.addConfidenceCalculation(
st.tool.name,
confidence,
@@ -803,7 +921,8 @@ class AIPipeline {
{
phase: st.phase,
priority: st.priority,
toolType: st.tool.type
toolType: st.tool.type,
moderatedTaskRelevance: st.taskRelevance
}
);
@@ -839,14 +958,14 @@ class AIPipeline {
st.limitations || []
);
// AUDIT: Confidence calculation for each tool
auditService.addConfidenceCalculation(
st.tool.name,
confidence,
Date.now(),
{
rank: st.tool.evaluation?.rank || 1,
toolType: st.tool.type
toolType: st.tool.type,
moderatedTaskRelevance: st.taskRelevance
}
);
@@ -873,7 +992,6 @@ class AIPipeline {
}
}
// Helper methods
private async callMicroTaskAI(
prompt: string,
context: PipelineContext,