RAG Roadmap
This commit is contained in:
		
							parent
							
								
									8693cd87d4
								
							
						
					
					
						commit
						37edc1549e
					
				
							
								
								
									
										358
									
								
								RAG-Roadmap.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										358
									
								
								RAG-Roadmap.md
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,358 @@
 | 
			
		||||
# Forensic-Grade RAG Implementation Roadmap
 | 
			
		||||
 | 
			
		||||
## Context & Current State Analysis
 | 
			
		||||
 | 
			
		||||
You have access to a forensic tools recommendation system built with:
 | 
			
		||||
- **Embeddings-based retrieval** (src/utils/embeddings.ts)
 | 
			
		||||
- **Multi-stage AI pipeline** (src/utils/aiPipeline.ts) 
 | 
			
		||||
- **Micro-task processing** for detailed analysis
 | 
			
		||||
- **Rate limiting and queue management** (src/utils/rateLimitedQueue.ts)
 | 
			
		||||
- **YAML-based tool database** (src/data/tools.yaml)
 | 
			
		||||
 | 
			
		||||
**Current Architecture**: Basic RAG (Retrieve → AI Selection → Micro-task Generation)
 | 
			
		||||
 | 
			
		||||
**Target Architecture**: Forensic-Grade RAG with transparency, objectivity, and reproducibility
 | 
			
		||||
 | 
			
		||||
## Implementation Roadmap
 | 
			
		||||
 | 
			
		||||
### PHASE 1: Configuration Externalization & AI Architecture Enhancement (Weeks 1-2)
 | 
			
		||||
 | 
			
		||||
#### 1.1 Complete Configuration Externalization
 | 
			
		||||
**Objective**: Remove all hard-coded values from codebase (except AI prompts)
 | 
			
		||||
 | 
			
		||||
**Tasks**:
 | 
			
		||||
1. **Create comprehensive configuration schema** in `src/config/`
 | 
			
		||||
   - `forensic-scoring.yaml` - All scoring criteria, weights, thresholds
 | 
			
		||||
   - `ai-models.yaml` - AI model configurations and routing
 | 
			
		||||
   - `system-parameters.yaml` - Rate limits, queue settings, processing parameters
 | 
			
		||||
   - `validation-criteria.yaml` - Expert validation rules, bias detection parameters
 | 
			
		||||
 | 
			
		||||
2. **Implement configuration loader** (`src/utils/configLoader.ts`)
 | 
			
		||||
   - Hot-reload capability for configuration changes
 | 
			
		||||
   - Environment-specific overrides (dev/staging/prod)
 | 
			
		||||
   - Configuration validation and schema enforcement
 | 
			
		||||
   - Default fallbacks for missing values
 | 
			
		||||
 | 
			
		||||
3. **Audit existing codebase** for hard-coded values:
 | 
			
		||||
   - Search for literal numbers, strings, arrays in TypeScript files
 | 
			
		||||
   - Extract to configuration files with meaningful names
 | 
			
		||||
   - Ensure all thresholds (similarity scores, rate limits, token counts) are configurable
 | 
			
		||||
 | 
			
		||||
#### 1.2 Dual AI Model Architecture Implementation
 | 
			
		||||
**Objective**: Implement large + small model strategy for optimal cost/performance
 | 
			
		||||
 | 
			
		||||
**Tasks**:
 | 
			
		||||
1. **Extend environment configuration**:
 | 
			
		||||
   ```
 | 
			
		||||
   # Strategic Analysis Model (Large, Few Tokens)
 | 
			
		||||
   AI_STRATEGIC_ENDPOINT=
 | 
			
		||||
   AI_STRATEGIC_API_KEY=
 | 
			
		||||
   AI_STRATEGIC_MODEL=mistral-large-latest
 | 
			
		||||
   AI_STRATEGIC_MAX_TOKENS=500
 | 
			
		||||
   AI_STRATEGIC_CONTEXT_WINDOW=32000
 | 
			
		||||
   
 | 
			
		||||
   # Content Generation Model (Small, Many Tokens)  
 | 
			
		||||
   AI_CONTENT_ENDPOINT=
 | 
			
		||||
   AI_CONTENT_API_KEY=
 | 
			
		||||
   AI_CONTENT_MODEL=mistral-small-latest
 | 
			
		||||
   AI_CONTENT_MAX_TOKENS=2000
 | 
			
		||||
   AI_CONTENT_CONTEXT_WINDOW=8000
 | 
			
		||||
   ```
 | 
			
		||||
 | 
			
		||||
2. **Create AI router** (`src/utils/aiRouter.ts`):
 | 
			
		||||
   - Route different task types to appropriate models
 | 
			
		||||
   - **Strategic tasks** → Large model: tool selection, bias analysis, methodology decisions
 | 
			
		||||
   - **Content tasks** → Small model: descriptions, explanations, micro-task outputs
 | 
			
		||||
   - Automatic fallback logic if primary model fails
 | 
			
		||||
   - Usage tracking and cost optimization
 | 
			
		||||
 | 
			
		||||
3. **Update aiPipeline.ts**:
 | 
			
		||||
   - Replace single `callAI()` method with task-specific methods
 | 
			
		||||
   - Implement intelligent routing based on task complexity
 | 
			
		||||
   - Add token estimation for optimal model selection
 | 
			
		||||
 | 
			
		||||
### PHASE 2: Evidence-Based Scoring Framework (Weeks 3-5)
 | 
			
		||||
 | 
			
		||||
#### 2.1 Forensic Scoring Engine Implementation
 | 
			
		||||
**Objective**: Replace subjective AI selection with objective, measurable criteria
 | 
			
		||||
 | 
			
		||||
**Tasks**:
 | 
			
		||||
1. **Create scoring framework** (`src/scoring/ForensicScorer.ts`):
 | 
			
		||||
   ```typescript
 | 
			
		||||
   interface ScoringCriterion {
 | 
			
		||||
     name: string;
 | 
			
		||||
     weight: number;
 | 
			
		||||
     methodology: string;
 | 
			
		||||
     dataSources: string[];
 | 
			
		||||
     calculator: (tool: Tool, scenario: Scenario) => Promise<CriterionScore>;
 | 
			
		||||
   }
 | 
			
		||||
   
 | 
			
		||||
   interface CriterionScore {
 | 
			
		||||
     value: number;           // 0-100
 | 
			
		||||
     confidence: number;      // 0-100  
 | 
			
		||||
     evidence: Evidence[];
 | 
			
		||||
     lastUpdated: Date;
 | 
			
		||||
   }
 | 
			
		||||
   ```
 | 
			
		||||
 | 
			
		||||
2. **Implement core scoring criteria**:
 | 
			
		||||
   - **Court Admissibility Scorer**: Based on legal precedent database
 | 
			
		||||
   - **Scientific Validity Scorer**: Based on peer-reviewed research citations
 | 
			
		||||
   - **Methodology Alignment Scorer**: NIST SP 800-86 compliance assessment
 | 
			
		||||
   - **Expert Consensus Scorer**: Practitioner survey data integration
 | 
			
		||||
   - **Error Rate Scorer**: Known false positive/negative rates
 | 
			
		||||
 | 
			
		||||
3. **Build evidence provenance system**:
 | 
			
		||||
   - Track source of every score component
 | 
			
		||||
   - Maintain citation database for all claims
 | 
			
		||||
   - Version control for scoring methodologies
 | 
			
		||||
   - Automatic staleness detection for outdated evidence
 | 
			
		||||
 | 
			
		||||
#### 2.2 Deterministic Core Implementation  
 | 
			
		||||
**Objective**: Ensure reproducible results for identical inputs
 | 
			
		||||
 | 
			
		||||
**Tasks**:
 | 
			
		||||
1. **Implement deterministic pipeline** (`src/analysis/DeterministicAnalyzer.ts`):
 | 
			
		||||
   - Rule-based scenario classification (SCADA/Mobile/Network/etc.)
 | 
			
		||||
   - Mathematical scoring combination (weighted averages, not AI decisions)
 | 
			
		||||
   - Consistent tool ranking algorithms
 | 
			
		||||
   - Reproducibility validation tests
 | 
			
		||||
 | 
			
		||||
2. **Add AI enhancement layer**:
 | 
			
		||||
   - AI provides explanations, NOT decisions
 | 
			
		||||
   - AI generates workflow descriptions based on deterministic selections
 | 
			
		||||
   - AI creates contextual advice around objective tool choices
 | 
			
		||||
 | 
			
		||||
### PHASE 3: Transparency & Audit Trail System (Weeks 4-6)
 | 
			
		||||
 | 
			
		||||
#### 3.1 Complete Audit Trail Implementation
 | 
			
		||||
**Objective**: Track every decision with forensic-grade documentation
 | 
			
		||||
 | 
			
		||||
**Tasks**:
 | 
			
		||||
1. **Create audit framework** (`src/audit/AuditTrail.ts`):
 | 
			
		||||
   ```typescript
 | 
			
		||||
   interface ForensicAuditTrail {
 | 
			
		||||
     queryId: string;
 | 
			
		||||
     userQuery: string;
 | 
			
		||||
     processingSteps: AuditStep[];
 | 
			
		||||
     finalRecommendation: RecommendationWithEvidence;
 | 
			
		||||
     reproducibilityHash: string;
 | 
			
		||||
     validationStatus: ValidationStatus;
 | 
			
		||||
   }
 | 
			
		||||
   
 | 
			
		||||
   interface AuditStep {
 | 
			
		||||
     stepName: string;
 | 
			
		||||
     input: any;
 | 
			
		||||
     methodology: string;
 | 
			
		||||
     output: any;
 | 
			
		||||
     evidence: Evidence[];
 | 
			
		||||
     confidence: number;
 | 
			
		||||
     processingTime: number;
 | 
			
		||||
     modelUsed?: string;
 | 
			
		||||
   }
 | 
			
		||||
   ```
 | 
			
		||||
 | 
			
		||||
2. **Implement evidence citation system**:
 | 
			
		||||
   - Automatic citation generation for all claims
 | 
			
		||||
   - Link to source standards (NIST, ISO, RFC)
 | 
			
		||||
   - Reference scientific papers for methodology choices
 | 
			
		||||
   - Track expert validation contributors
 | 
			
		||||
 | 
			
		||||
3. **Build explanation generator**:
 | 
			
		||||
   - Human-readable reasoning for every recommendation
 | 
			
		||||
   - "Why this tool" and "Why not alternatives" explanations
 | 
			
		||||
   - Confidence level communication
 | 
			
		||||
   - Uncertainty quantification
 | 
			
		||||
 | 
			
		||||
#### 3.2 Bias Detection & Mitigation System
 | 
			
		||||
**Objective**: Actively detect and correct recommendation biases
 | 
			
		||||
 | 
			
		||||
**Tasks**:
 | 
			
		||||
1. **Implement bias detection** (`src/bias/BiasDetector.ts`):
 | 
			
		||||
   - **Popularity bias**: Over-recommendation of well-known tools
 | 
			
		||||
   - **Availability bias**: Preference for easily accessible tools
 | 
			
		||||
   - **Recency bias**: Over-weighting of newest tools
 | 
			
		||||
   - **Cultural bias**: Platform or methodology preferences
 | 
			
		||||
 | 
			
		||||
2. **Create mitigation strategies**:
 | 
			
		||||
   - Automatic bias adjustment algorithms
 | 
			
		||||
   - Diversity requirements for recommendations
 | 
			
		||||
   - Fairness metrics across tool categories
 | 
			
		||||
   - Bias reporting in audit trails
 | 
			
		||||
 | 
			
		||||
### PHASE 4: Expert Validation & Learning System (Weeks 6-8)
 | 
			
		||||
 | 
			
		||||
#### 4.1 Expert Review Integration
 | 
			
		||||
**Objective**: Enable forensic experts to validate and improve recommendations
 | 
			
		||||
 | 
			
		||||
**Tasks**:
 | 
			
		||||
1. **Build expert validation interface** (`src/validation/ExpertReview.ts`):
 | 
			
		||||
   - Structured feedback collection from forensic practitioners
 | 
			
		||||
   - Agreement/disagreement tracking with detailed reasoning
 | 
			
		||||
   - Expert consensus building over time
 | 
			
		||||
   - Minority opinion preservation
 | 
			
		||||
 | 
			
		||||
2. **Implement validation loop**:
 | 
			
		||||
   - Flag recommendations requiring expert review
 | 
			
		||||
   - Track expert validation rates and patterns
 | 
			
		||||
   - Update scoring based on real-world feedback
 | 
			
		||||
   - Methodology improvement based on expert input
 | 
			
		||||
 | 
			
		||||
#### 4.2 Real-World Case Learning
 | 
			
		||||
**Objective**: Learn from actual forensic investigations
 | 
			
		||||
 | 
			
		||||
**Tasks**:
 | 
			
		||||
1. **Create case study integration** (`src/learning/CaseStudyLearner.ts`):
 | 
			
		||||
   - Anonymous case outcome tracking
 | 
			
		||||
   - Tool effectiveness measurement in real scenarios
 | 
			
		||||
   - Methodology success/failure analysis
 | 
			
		||||
   - Continuous improvement based on field results
 | 
			
		||||
 | 
			
		||||
2. **Implement feedback loops**:
 | 
			
		||||
   - Post-case recommendation validation
 | 
			
		||||
   - Tool performance tracking in actual investigations
 | 
			
		||||
   - Methodology refinement based on outcomes
 | 
			
		||||
   - Success rate improvement over time
 | 
			
		||||
 | 
			
		||||
### PHASE 5: Advanced Features & Scientific Rigor (Weeks 7-10)
 | 
			
		||||
 | 
			
		||||
#### 5.1 Confidence & Uncertainty Quantification
 | 
			
		||||
**Objective**: Provide scientific confidence levels for all recommendations
 | 
			
		||||
 | 
			
		||||
**Tasks**:
 | 
			
		||||
1. **Implement uncertainty quantification** (`src/uncertainty/ConfidenceCalculator.ts`):
 | 
			
		||||
   - Statistical confidence intervals for scores
 | 
			
		||||
   - Uncertainty propagation through scoring pipeline
 | 
			
		||||
   - Risk assessment for recommendation reliability
 | 
			
		||||
   - Alternative recommendation ranking
 | 
			
		||||
 | 
			
		||||
2. **Add fallback recommendation system**:
 | 
			
		||||
   - Multiple ranked alternatives for each recommendation
 | 
			
		||||
   - Contingency planning for tool failures
 | 
			
		||||
   - Risk-based recommendation portfolios
 | 
			
		||||
   - Sensitivity analysis for critical decisions
 | 
			
		||||
 | 
			
		||||
#### 5.2 Reproducibility Testing Framework
 | 
			
		||||
**Objective**: Ensure consistent results across time and implementations
 | 
			
		||||
 | 
			
		||||
**Tasks**:
 | 
			
		||||
1. **Build reproducibility testing** (`src/testing/ReproducibilityTester.ts`):
 | 
			
		||||
   - Automated consistency validation
 | 
			
		||||
   - Inter-rater reliability testing
 | 
			
		||||
   - Cross-temporal stability analysis
 | 
			
		||||
   - Version control for methodology changes
 | 
			
		||||
 | 
			
		||||
2. **Implement quality assurance**:
 | 
			
		||||
   - Continuous integration for reproducibility
 | 
			
		||||
   - Regression testing for methodology changes
 | 
			
		||||
   - Performance monitoring for consistency
 | 
			
		||||
   - Alert system for unexpected variations
 | 
			
		||||
 | 
			
		||||
### PHASE 6: Integration & Production Readiness (Weeks 9-12)
 | 
			
		||||
 | 
			
		||||
#### 6.1 System Integration
 | 
			
		||||
**Objective**: Integrate all forensic-grade components seamlessly
 | 
			
		||||
 | 
			
		||||
**Tasks**:
 | 
			
		||||
1. **Update existing components**:
 | 
			
		||||
   - Modify `aiPipeline.ts` to use new scoring framework
 | 
			
		||||
   - Update `embeddings.ts` with evidence tracking
 | 
			
		||||
   - Enhance `rateLimitedQueue.ts` with audit capabilities
 | 
			
		||||
   - Refactor `query.ts` API to return audit trails
 | 
			
		||||
 | 
			
		||||
2. **Performance optimization**:
 | 
			
		||||
   - Caching strategies for expensive evidence lookups
 | 
			
		||||
   - Parallel processing for scoring criteria
 | 
			
		||||
   - Efficient storage for audit trails
 | 
			
		||||
   - Load balancing for dual AI models
 | 
			
		||||
 | 
			
		||||
#### 6.2 Production Features
 | 
			
		||||
**Objective**: Make system ready for professional forensic use
 | 
			
		||||
 | 
			
		||||
**Tasks**:
 | 
			
		||||
1. **Add professional features**:
 | 
			
		||||
   - Export recommendations to forensic report formats
 | 
			
		||||
   - Integration with existing forensic workflows
 | 
			
		||||
   - Batch processing for multiple scenarios
 | 
			
		||||
   - API endpoints for external tool integration
 | 
			
		||||
 | 
			
		||||
2. **Implement monitoring & maintenance**:
 | 
			
		||||
   - Health checks for all system components
 | 
			
		||||
   - Performance monitoring for response times
 | 
			
		||||
   - Error tracking and alerting
 | 
			
		||||
   - Automatic system updates for new evidence
 | 
			
		||||
 | 
			
		||||
## Technical Implementation Guidelines
 | 
			
		||||
 | 
			
		||||
### Configuration Management
 | 
			
		||||
- Use YAML files for human-readable configuration
 | 
			
		||||
- Implement JSON Schema validation for all config files
 | 
			
		||||
- Support environment variable overrides
 | 
			
		||||
- Hot-reload for development, restart for production changes
 | 
			
		||||
 | 
			
		||||
### AI Model Routing Strategy
 | 
			
		||||
```typescript
 | 
			
		||||
// Task Classification for Model Selection
 | 
			
		||||
const AI_TASK_ROUTING = {
 | 
			
		||||
  strategic: ['tool-selection', 'bias-analysis', 'methodology-decisions'],
 | 
			
		||||
  content: ['descriptions', 'explanations', 'micro-tasks', 'workflows']
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
// Cost Optimization Logic
 | 
			
		||||
if (taskComplexity === 'high' && responseTokens < 500) {
 | 
			
		||||
  useModel = 'large';
 | 
			
		||||
} else if (taskComplexity === 'low' && responseTokens > 1000) {
 | 
			
		||||
  useModel = 'small';
 | 
			
		||||
} else {
 | 
			
		||||
  useModel = config.defaultModel;
 | 
			
		||||
}
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### Evidence Database Structure
 | 
			
		||||
```typescript
 | 
			
		||||
interface EvidenceSource {
 | 
			
		||||
  type: 'standard' | 'paper' | 'case-law' | 'expert-survey';
 | 
			
		||||
  citation: string;
 | 
			
		||||
  reliability: number;
 | 
			
		||||
  lastValidated: Date;
 | 
			
		||||
  content: string;
 | 
			
		||||
  metadata: Record<string, any>;
 | 
			
		||||
}
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### Quality Assurance Requirements
 | 
			
		||||
- All scoring criteria must have documented methodologies
 | 
			
		||||
- Every recommendation must include confidence levels
 | 
			
		||||
- All AI-generated content must be marked as such
 | 
			
		||||
- Reproducibility tests must pass with >95% consistency
 | 
			
		||||
- Expert validation rate must exceed 80% for production use
 | 
			
		||||
 | 
			
		||||
## Success Metrics
 | 
			
		||||
 | 
			
		||||
### Forensic Quality Metrics
 | 
			
		||||
- **Transparency**: 100% of decisions traceable to evidence
 | 
			
		||||
- **Objectivity**: <5% variance in scoring between runs
 | 
			
		||||
- **Reproducibility**: >95% identical results for identical inputs
 | 
			
		||||
- **Expert Agreement**: >80% expert validation rate
 | 
			
		||||
- **Bias Reduction**: <10% bias score across all categories
 | 
			
		||||
 | 
			
		||||
### Performance Metrics  
 | 
			
		||||
- **Response Time**: <30 seconds for workflow recommendations
 | 
			
		||||
- **Accuracy**: >90% real-world case validation success
 | 
			
		||||
- **Coverage**: Support for >95% of common forensic scenarios
 | 
			
		||||
- **Reliability**: <1% system error rate
 | 
			
		||||
- **Cost Efficiency**: <50% cost reduction vs. single large model
 | 
			
		||||
 | 
			
		||||
## Risk Mitigation
 | 
			
		||||
 | 
			
		||||
### Technical Risks
 | 
			
		||||
- **AI Model Failures**: Implement robust fallback mechanisms
 | 
			
		||||
- **Configuration Errors**: Comprehensive validation and testing
 | 
			
		||||
- **Performance Issues**: Load testing and optimization
 | 
			
		||||
- **Data Corruption**: Backup and recovery procedures
 | 
			
		||||
 | 
			
		||||
### Forensic Risks
 | 
			
		||||
- **Bias Introduction**: Continuous monitoring and expert validation
 | 
			
		||||
- **Methodology Errors**: Peer review and scientific validation
 | 
			
		||||
- **Legal Challenges**: Ensure compliance with admissibility standards
 | 
			
		||||
- **Expert Disagreement**: Transparent uncertainty communication
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user