453 lines
21 KiB
Python
453 lines
21 KiB
Python
"""
|
|
Graph data model for DNSRecon using NetworkX.
|
|
Manages in-memory graph storage with confidence scoring and forensic metadata.
|
|
"""
|
|
import re
|
|
from datetime import datetime, timezone
|
|
from enum import Enum
|
|
from typing import Dict, List, Any, Optional, Tuple
|
|
|
|
import networkx as nx
|
|
|
|
|
|
class NodeType(Enum):
|
|
"""Enumeration of supported node types."""
|
|
DOMAIN = "domain"
|
|
IP = "ip"
|
|
ASN = "asn"
|
|
LARGE_ENTITY = "large_entity"
|
|
CORRELATION_OBJECT = "correlation_object"
|
|
|
|
def __repr__(self):
|
|
return self.value
|
|
|
|
|
|
class GraphManager:
|
|
"""
|
|
Thread-safe graph manager for DNSRecon infrastructure mapping.
|
|
Uses NetworkX for in-memory graph storage with confidence scoring.
|
|
"""
|
|
|
|
def __init__(self):
|
|
"""Initialize empty directed graph."""
|
|
self.graph = nx.DiGraph()
|
|
self.creation_time = datetime.now(timezone.utc).isoformat()
|
|
self.last_modified = self.creation_time
|
|
self.correlation_index = {}
|
|
# Compile regex for date filtering for efficiency
|
|
self.date_pattern = re.compile(r'^\d{4}-\d{2}-\d{2}[ T]\d{2}:\d{2}:\d{2}')
|
|
|
|
def __getstate__(self):
|
|
"""Prepare GraphManager for pickling, excluding compiled regex."""
|
|
state = self.__dict__.copy()
|
|
# Compiled regex patterns are not always picklable
|
|
if 'date_pattern' in state:
|
|
del state['date_pattern']
|
|
return state
|
|
|
|
def __setstate__(self, state):
|
|
"""Restore GraphManager state and recompile regex."""
|
|
self.__dict__.update(state)
|
|
self.date_pattern = re.compile(r'^\d{4}-\d{2}-\d{2}[ T]\d{2}:\d{2}:\d{2}')
|
|
|
|
def _update_correlation_index(self, node_id: str, data: Any, path: List[str] = []):
|
|
"""Recursively traverse metadata and add hashable values to the index."""
|
|
if path is None:
|
|
path = []
|
|
|
|
if isinstance(data, dict):
|
|
for key, value in data.items():
|
|
self._update_correlation_index(node_id, value, path + [key])
|
|
elif isinstance(data, list):
|
|
for i, item in enumerate(data):
|
|
self._update_correlation_index(node_id, item, path + [f"[{i}]"])
|
|
else:
|
|
self._add_to_correlation_index(node_id, data, ".".join(path))
|
|
|
|
def _add_to_correlation_index(self, node_id: str, value: Any, path_str: str):
|
|
"""Add a hashable value to the correlation index, filtering out noise."""
|
|
if not isinstance(value, (str, int, float, bool)) or value is None:
|
|
return
|
|
|
|
# Ignore certain paths that contain noisy, non-unique identifiers
|
|
if any(keyword in path_str.lower() for keyword in ['count', 'total', 'timestamp', 'date']):
|
|
return
|
|
|
|
# Filter out common low-entropy values and date-like strings
|
|
if isinstance(value, str):
|
|
# FIXED: Prevent correlation on date/time strings.
|
|
if self.date_pattern.match(value):
|
|
return
|
|
if len(value) < 4 or value.lower() in ['true', 'false', 'unknown', 'none', 'crt.sh']:
|
|
return
|
|
elif isinstance(value, int) and abs(value) < 9999:
|
|
return # Ignore small integers
|
|
elif isinstance(value, bool):
|
|
return # Ignore boolean values
|
|
|
|
# Add the valuable correlation data to the index
|
|
if value not in self.correlation_index:
|
|
self.correlation_index[value] = {}
|
|
if node_id not in self.correlation_index[value]:
|
|
self.correlation_index[value][node_id] = []
|
|
if path_str not in self.correlation_index[value][node_id]:
|
|
self.correlation_index[value][node_id].append(path_str)
|
|
|
|
def _check_for_correlations(self, new_node_id: str, data: Any, path: List[str] = []) -> List[Dict]:
|
|
"""Recursively traverse metadata to find correlations with existing data."""
|
|
if path is None:
|
|
path = []
|
|
|
|
all_correlations = []
|
|
if isinstance(data, dict):
|
|
for key, value in data.items():
|
|
if key == 'source': # Avoid correlating on the provider name
|
|
continue
|
|
all_correlations.extend(self._check_for_correlations(new_node_id, value, path + [key]))
|
|
elif isinstance(data, list):
|
|
for i, item in enumerate(data):
|
|
all_correlations.extend(self._check_for_correlations(new_node_id, item, path + [f"[{i}]"]))
|
|
else:
|
|
value = data
|
|
if value in self.correlation_index:
|
|
existing_nodes_with_paths = self.correlation_index[value]
|
|
unique_nodes = set(existing_nodes_with_paths.keys())
|
|
unique_nodes.add(new_node_id)
|
|
|
|
if len(unique_nodes) < 2:
|
|
return all_correlations # Correlation must involve at least two distinct nodes
|
|
|
|
new_source = {'node_id': new_node_id, 'path': ".".join(path)}
|
|
all_sources = [new_source]
|
|
for node_id, paths in existing_nodes_with_paths.items():
|
|
for p_str in paths:
|
|
all_sources.append({'node_id': node_id, 'path': p_str})
|
|
|
|
all_correlations.append({
|
|
'value': value,
|
|
'sources': all_sources,
|
|
'nodes': list(unique_nodes)
|
|
})
|
|
return all_correlations
|
|
|
|
def add_node(self, node_id: str, node_type: NodeType, attributes: Optional[Dict[str, Any]] = None,
|
|
description: str = "", metadata: Optional[Dict[str, Any]] = None) -> bool:
|
|
"""Add a node to the graph, update attributes, and process correlations."""
|
|
is_new_node = not self.graph.has_node(node_id)
|
|
if is_new_node:
|
|
self.graph.add_node(node_id, type=node_type.value,
|
|
added_timestamp=datetime.now(timezone.utc).isoformat(),
|
|
attributes=attributes or {},
|
|
description=description,
|
|
metadata=metadata or {})
|
|
else:
|
|
# Safely merge new attributes into existing attributes
|
|
if attributes:
|
|
existing_attributes = self.graph.nodes[node_id].get('attributes', {})
|
|
existing_attributes.update(attributes)
|
|
self.graph.nodes[node_id]['attributes'] = existing_attributes
|
|
if description:
|
|
self.graph.nodes[node_id]['description'] = description
|
|
if metadata:
|
|
existing_metadata = self.graph.nodes[node_id].get('metadata', {})
|
|
existing_metadata.update(metadata)
|
|
self.graph.nodes[node_id]['metadata'] = existing_metadata
|
|
|
|
if attributes and node_type != NodeType.CORRELATION_OBJECT:
|
|
correlations = self._check_for_correlations(node_id, attributes)
|
|
for corr in correlations:
|
|
value = corr['value']
|
|
|
|
# STEP 1: Substring check against all existing nodes
|
|
if self._correlation_value_matches_existing_node(value):
|
|
# Skip creating correlation node - would be redundant
|
|
continue
|
|
|
|
# STEP 2: Filter out node pairs that already have direct edges
|
|
eligible_nodes = self._filter_nodes_without_direct_edges(set(corr['nodes']))
|
|
|
|
if len(eligible_nodes) < 2:
|
|
# Need at least 2 nodes to create a correlation
|
|
continue
|
|
|
|
# STEP 3: Check for existing correlation node with same connection pattern
|
|
correlation_nodes_with_pattern = self._find_correlation_nodes_with_same_pattern(eligible_nodes)
|
|
|
|
if correlation_nodes_with_pattern:
|
|
# STEP 4: Merge with existing correlation node
|
|
target_correlation_node = correlation_nodes_with_pattern[0]
|
|
self._merge_correlation_values(target_correlation_node, value, corr)
|
|
else:
|
|
# STEP 5: Create new correlation node for eligible nodes only
|
|
correlation_node_id = f"corr_{abs(hash(str(sorted(eligible_nodes))))}"
|
|
self.add_node(correlation_node_id, NodeType.CORRELATION_OBJECT,
|
|
metadata={'values': [value], 'sources': corr['sources'],
|
|
'correlated_nodes': list(eligible_nodes)})
|
|
|
|
# Create edges from eligible nodes to this correlation node
|
|
for c_node_id in eligible_nodes:
|
|
if self.graph.has_node(c_node_id):
|
|
attribute = corr['sources'][0]['path'].split('.')[-1]
|
|
relationship_type = f"c_{attribute}"
|
|
self.add_edge(c_node_id, correlation_node_id, relationship_type, confidence_score=0.9)
|
|
|
|
self._update_correlation_index(node_id, attributes)
|
|
|
|
self.last_modified = datetime.now(timezone.utc).isoformat()
|
|
return is_new_node
|
|
|
|
def _filter_nodes_without_direct_edges(self, node_set: set) -> set:
|
|
"""
|
|
Filter out nodes that already have direct edges between them.
|
|
Returns set of nodes that should be included in correlation.
|
|
"""
|
|
nodes_list = list(node_set)
|
|
eligible_nodes = set(node_set) # Start with all nodes
|
|
|
|
# Check all pairs of nodes
|
|
for i in range(len(nodes_list)):
|
|
for j in range(i + 1, len(nodes_list)):
|
|
node_a = nodes_list[i]
|
|
node_b = nodes_list[j]
|
|
|
|
# Check if direct edge exists in either direction
|
|
if self._has_direct_edge_bidirectional(node_a, node_b):
|
|
# Remove both nodes from eligible set since they're already connected
|
|
eligible_nodes.discard(node_a)
|
|
eligible_nodes.discard(node_b)
|
|
|
|
return eligible_nodes
|
|
|
|
def _has_direct_edge_bidirectional(self, node_a: str, node_b: str) -> bool:
|
|
"""
|
|
Check if there's a direct edge between two nodes in either direction.
|
|
Returns True if node_a→node_b OR node_b→node_a exists.
|
|
"""
|
|
return (self.graph.has_edge(node_a, node_b) or
|
|
self.graph.has_edge(node_b, node_a))
|
|
|
|
def _correlation_value_matches_existing_node(self, correlation_value: str) -> bool:
|
|
"""
|
|
Check if correlation value contains any existing node ID as substring.
|
|
Returns True if match found (correlation node should NOT be created).
|
|
"""
|
|
correlation_str = str(correlation_value).lower()
|
|
|
|
# Check against all existing nodes
|
|
for existing_node_id in self.graph.nodes():
|
|
if existing_node_id.lower() in correlation_str:
|
|
return True
|
|
|
|
return False
|
|
|
|
def _find_correlation_nodes_with_same_pattern(self, node_set: set) -> List[str]:
|
|
"""
|
|
Find existing correlation nodes that have the exact same pattern of connected nodes.
|
|
Returns list of correlation node IDs with matching patterns.
|
|
"""
|
|
correlation_nodes = self.get_nodes_by_type(NodeType.CORRELATION_OBJECT)
|
|
matching_nodes = []
|
|
|
|
for corr_node_id in correlation_nodes:
|
|
# Get all nodes connected to this correlation node
|
|
connected_nodes = set()
|
|
|
|
# Add all predecessors (nodes pointing TO the correlation node)
|
|
connected_nodes.update(self.graph.predecessors(corr_node_id))
|
|
|
|
# Add all successors (nodes pointed TO by the correlation node)
|
|
connected_nodes.update(self.graph.successors(corr_node_id))
|
|
|
|
# Check if the pattern matches exactly
|
|
if connected_nodes == node_set:
|
|
matching_nodes.append(corr_node_id)
|
|
|
|
return matching_nodes
|
|
|
|
def _merge_correlation_values(self, target_node_id: str, new_value: Any, corr_data: Dict) -> None:
|
|
"""
|
|
Merge a new correlation value into an existing correlation node.
|
|
Uses same logic as large entity merging.
|
|
"""
|
|
if not self.graph.has_node(target_node_id):
|
|
return
|
|
|
|
target_metadata = self.graph.nodes[target_node_id]['metadata']
|
|
|
|
# Get existing values (ensure it's a list)
|
|
existing_values = target_metadata.get('values', [])
|
|
if not isinstance(existing_values, list):
|
|
existing_values = [existing_values]
|
|
|
|
# Add new value if not already present
|
|
if new_value not in existing_values:
|
|
existing_values.append(new_value)
|
|
|
|
# Merge sources
|
|
existing_sources = target_metadata.get('sources', [])
|
|
new_sources = corr_data.get('sources', [])
|
|
|
|
# Create set of unique sources based on (node_id, path) tuples
|
|
source_set = set()
|
|
for source in existing_sources + new_sources:
|
|
source_tuple = (source['node_id'], source['path'])
|
|
source_set.add(source_tuple)
|
|
|
|
# Convert back to list of dictionaries
|
|
merged_sources = [{'node_id': nid, 'path': path} for nid, path in source_set]
|
|
|
|
# Update metadata
|
|
target_metadata.update({
|
|
'values': existing_values,
|
|
'sources': merged_sources,
|
|
'correlated_nodes': list(set(target_metadata.get('correlated_nodes', []) + corr_data.get('nodes', []))),
|
|
'merge_count': len(existing_values),
|
|
'last_merge_timestamp': datetime.now(timezone.utc).isoformat()
|
|
})
|
|
|
|
# Update description to reflect merged nature
|
|
value_count = len(existing_values)
|
|
node_count = len(target_metadata['correlated_nodes'])
|
|
self.graph.nodes[target_node_id]['description'] = (
|
|
f"Correlation container with {value_count} merged values "
|
|
f"across {node_count} nodes"
|
|
)
|
|
|
|
def add_edge(self, source_id: str, target_id: str, relationship_type: str,
|
|
confidence_score: float = 0.5, source_provider: str = "unknown",
|
|
raw_data: Optional[Dict[str, Any]] = None) -> bool:
|
|
"""Add or update an edge between two nodes, ensuring nodes exist."""
|
|
if not self.graph.has_node(source_id) or not self.graph.has_node(target_id):
|
|
return False
|
|
|
|
new_confidence = confidence_score
|
|
|
|
if relationship_type.startswith("c_"):
|
|
edge_label = relationship_type
|
|
else:
|
|
edge_label = f"{source_provider}_{relationship_type}"
|
|
|
|
if self.graph.has_edge(source_id, target_id):
|
|
# If edge exists, update confidence if the new score is higher.
|
|
if new_confidence > self.graph.edges[source_id, target_id].get('confidence_score', 0):
|
|
self.graph.edges[source_id, target_id]['confidence_score'] = new_confidence
|
|
self.graph.edges[source_id, target_id]['updated_timestamp'] = datetime.now(timezone.utc).isoformat()
|
|
self.graph.edges[source_id, target_id]['updated_by'] = source_provider
|
|
return False
|
|
|
|
# Add a new edge with all attributes.
|
|
self.graph.add_edge(source_id, target_id,
|
|
relationship_type=edge_label,
|
|
confidence_score=new_confidence,
|
|
source_provider=source_provider,
|
|
discovery_timestamp=datetime.now(timezone.utc).isoformat(),
|
|
raw_data=raw_data or {})
|
|
self.last_modified = datetime.now(timezone.utc).isoformat()
|
|
return True
|
|
|
|
def get_node_count(self) -> int:
|
|
"""Get total number of nodes in the graph."""
|
|
return self.graph.number_of_nodes()
|
|
|
|
def get_edge_count(self) -> int:
|
|
"""Get total number of edges in the graph."""
|
|
return self.graph.number_of_edges()
|
|
|
|
def get_nodes_by_type(self, node_type: NodeType) -> List[str]:
|
|
"""Get all nodes of a specific type."""
|
|
return [n for n, d in self.graph.nodes(data=True) if d.get('type') == node_type.value]
|
|
|
|
def get_neighbors(self, node_id: str) -> List[str]:
|
|
"""Get all unique neighbors (predecessors and successors) for a node."""
|
|
if not self.graph.has_node(node_id):
|
|
return []
|
|
return list(set(self.graph.predecessors(node_id)) | set(self.graph.successors(node_id)))
|
|
|
|
def get_high_confidence_edges(self, min_confidence: float = 0.8) -> List[Tuple[str, str, Dict]]:
|
|
"""Get edges with confidence score above a given threshold."""
|
|
return [(u, v, d) for u, v, d in self.graph.edges(data=True)
|
|
if d.get('confidence_score', 0) >= min_confidence]
|
|
|
|
def get_graph_data(self) -> Dict[str, Any]:
|
|
"""Export graph data formatted for frontend visualization."""
|
|
nodes = []
|
|
for node_id, attrs in self.graph.nodes(data=True):
|
|
node_data = {'id': node_id, 'label': node_id, 'type': attrs.get('type', 'unknown'),
|
|
'attributes': attrs.get('attributes', {}),
|
|
'description': attrs.get('description', ''),
|
|
'metadata': attrs.get('metadata', {}),
|
|
'added_timestamp': attrs.get('added_timestamp')}
|
|
# Customize node appearance based on type and attributes
|
|
node_type = node_data['type']
|
|
attributes = node_data['attributes']
|
|
if node_type == 'domain' and attributes.get('certificates', {}).get('has_valid_cert') is False:
|
|
node_data['color'] = {'background': '#c7c7c7', 'border': '#999'} # Gray for invalid cert
|
|
|
|
# Add incoming and outgoing edges to node data
|
|
if self.graph.has_node(node_id):
|
|
node_data['incoming_edges'] = [{'from': u, 'data': d} for u, _, d in self.graph.in_edges(node_id, data=True)]
|
|
node_data['outgoing_edges'] = [{'to': v, 'data': d} for _, v, d in self.graph.out_edges(node_id, data=True)]
|
|
|
|
nodes.append(node_data)
|
|
|
|
edges = []
|
|
for source, target, attrs in self.graph.edges(data=True):
|
|
edges.append({'from': source, 'to': target,
|
|
'label': attrs.get('relationship_type', ''),
|
|
'confidence_score': attrs.get('confidence_score', 0),
|
|
'source_provider': attrs.get('source_provider', ''),
|
|
'discovery_timestamp': attrs.get('discovery_timestamp')})
|
|
return {
|
|
'nodes': nodes, 'edges': edges,
|
|
'statistics': self.get_statistics()['basic_metrics']
|
|
}
|
|
|
|
def export_json(self) -> Dict[str, Any]:
|
|
"""Export complete graph data as a JSON-serializable dictionary."""
|
|
graph_data = nx.node_link_data(self.graph) # Use NetworkX's built-in robust serializer
|
|
return {
|
|
'export_metadata': {
|
|
'export_timestamp': datetime.now(timezone.utc).isoformat(),
|
|
'graph_creation_time': self.creation_time,
|
|
'last_modified': self.last_modified,
|
|
'total_nodes': self.get_node_count(),
|
|
'total_edges': self.get_edge_count(),
|
|
'graph_format': 'dnsrecon_v1_nodeling'
|
|
},
|
|
'graph': graph_data,
|
|
'statistics': self.get_statistics()
|
|
}
|
|
|
|
def _get_confidence_distribution(self) -> Dict[str, int]:
|
|
"""Get distribution of edge confidence scores."""
|
|
distribution = {'high': 0, 'medium': 0, 'low': 0}
|
|
for _, _, confidence in self.graph.edges(data='confidence_score', default=0):
|
|
if confidence >= 0.8: distribution['high'] += 1
|
|
elif confidence >= 0.6: distribution['medium'] += 1
|
|
else: distribution['low'] += 1
|
|
return distribution
|
|
|
|
def get_statistics(self) -> Dict[str, Any]:
|
|
"""Get comprehensive statistics about the graph."""
|
|
stats = {'basic_metrics': {'total_nodes': self.get_node_count(),
|
|
'total_edges': self.get_edge_count(),
|
|
'creation_time': self.creation_time,
|
|
'last_modified': self.last_modified},
|
|
'node_type_distribution': {}, 'relationship_type_distribution': {},
|
|
'confidence_distribution': self._get_confidence_distribution(),
|
|
'provider_distribution': {}}
|
|
# Calculate distributions
|
|
for node_type in NodeType:
|
|
stats['node_type_distribution'][node_type.value] = self.get_nodes_by_type(node_type).__len__()
|
|
for _, _, rel_type in self.graph.edges(data='relationship_type', default='unknown'):
|
|
stats['relationship_type_distribution'][rel_type] = stats['relationship_type_distribution'].get(rel_type, 0) + 1
|
|
for _, _, provider in self.graph.edges(data='source_provider', default='unknown'):
|
|
stats['provider_distribution'][provider] = stats['provider_distribution'].get(provider, 0) + 1
|
|
return stats
|
|
|
|
def clear(self) -> None:
|
|
"""Clear all nodes, edges, and indices from the graph."""
|
|
self.graph.clear()
|
|
self.correlation_index.clear()
|
|
self.creation_time = datetime.now(timezone.utc).isoformat()
|
|
self.last_modified = self.creation_time |