update edge labels

This commit is contained in:
overcuriousity 2025-09-14 20:50:09 +02:00
parent d7adf9ad8b
commit ae07635ab6

View File

@ -1,3 +1,5 @@
# core/graph_manager.py
"""
Graph data model for DNSRecon using NetworkX.
Manages in-memory graph storage with confidence scoring and forensic metadata.
@ -50,21 +52,23 @@ class GraphManager:
self.__dict__.update(state)
self.date_pattern = re.compile(r'^\d{4}-\d{2}-\d{2}[ T]\d{2}:\d{2}:\d{2}')
def _update_correlation_index(self, node_id: str, data: Any, path: List[str] = []):
"""Recursively traverse metadata and add hashable values to the index."""
def _update_correlation_index(self, node_id: str, data: Any, path: List[str] = [], parent_attr: str = ""):
"""Recursively traverse metadata and add hashable values to the index with better path tracking."""
if path is None:
path = []
if isinstance(data, dict):
for key, value in data.items():
self._update_correlation_index(node_id, value, path + [key])
self._update_correlation_index(node_id, value, path + [key], key)
elif isinstance(data, list):
for i, item in enumerate(data):
self._update_correlation_index(node_id, item, path + [f"[{i}]"])
# Instead of just using [i], include the parent attribute context
list_path_component = f"[{i}]" if not parent_attr else f"{parent_attr}[{i}]"
self._update_correlation_index(node_id, item, path + [list_path_component], parent_attr)
else:
self._add_to_correlation_index(node_id, data, ".".join(path))
self._add_to_correlation_index(node_id, data, ".".join(path), parent_attr)
def _add_to_correlation_index(self, node_id: str, value: Any, path_str: str):
def _add_to_correlation_index(self, node_id: str, value: Any, path_str: str, parent_attr: str = ""):
"""Add a hashable value to the correlation index, filtering out noise."""
if not isinstance(value, (str, int, float, bool)) or value is None:
return
@ -90,10 +94,47 @@ class GraphManager:
self.correlation_index[value] = {}
if node_id not in self.correlation_index[value]:
self.correlation_index[value][node_id] = []
if path_str not in self.correlation_index[value][node_id]:
self.correlation_index[value][node_id].append(path_str)
def _check_for_correlations(self, new_node_id: str, data: Any, path: List[str] = []) -> List[Dict]:
# Store both the full path and the parent attribute for better edge labeling
correlation_entry = {
'path': path_str,
'parent_attr': parent_attr,
'meaningful_attr': self._extract_meaningful_attribute(path_str, parent_attr)
}
if correlation_entry not in self.correlation_index[value][node_id]:
self.correlation_index[value][node_id].append(correlation_entry)
def _extract_meaningful_attribute(self, path_str: str, parent_attr: str = "") -> str:
"""Extract the most meaningful attribute name from a path string."""
if not path_str:
return "unknown"
path_parts = path_str.split('.')
# Look for the last non-array-index part
for part in reversed(path_parts):
# Skip array indices like [0], [1], etc.
if not (part.startswith('[') and part.endswith(']') and part[1:-1].isdigit()):
# Clean up compound names like "hostnames[0]" to just "hostnames"
clean_part = re.sub(r'\[\d+\]$', '', part)
if clean_part:
return clean_part
# Fallback to parent attribute if available
if parent_attr:
return parent_attr
# Last resort - use the first meaningful part
for part in path_parts:
if not (part.startswith('[') and part.endswith(']') and part[1:-1].isdigit()):
clean_part = re.sub(r'\[\d+\]$', '', part)
if clean_part:
return clean_part
return "correlation"
def _check_for_correlations(self, new_node_id: str, data: Any, path: List[str] = [], parent_attr: str = "") -> List[Dict]:
"""Recursively traverse metadata to find correlations with existing data."""
if path is None:
path = []
@ -103,10 +144,11 @@ class GraphManager:
for key, value in data.items():
if key == 'source': # Avoid correlating on the provider name
continue
all_correlations.extend(self._check_for_correlations(new_node_id, value, path + [key]))
all_correlations.extend(self._check_for_correlations(new_node_id, value, path + [key], key))
elif isinstance(data, list):
for i, item in enumerate(data):
all_correlations.extend(self._check_for_correlations(new_node_id, item, path + [f"[{i}]"]))
list_path_component = f"[{i}]" if not parent_attr else f"{parent_attr}[{i}]"
all_correlations.extend(self._check_for_correlations(new_node_id, item, path + [list_path_component], parent_attr))
else:
value = data
if value in self.correlation_index:
@ -117,11 +159,31 @@ class GraphManager:
if len(unique_nodes) < 2:
return all_correlations # Correlation must involve at least two distinct nodes
new_source = {'node_id': new_node_id, 'path': ".".join(path)}
new_source = {
'node_id': new_node_id,
'path': ".".join(path),
'parent_attr': parent_attr,
'meaningful_attr': self._extract_meaningful_attribute(".".join(path), parent_attr)
}
all_sources = [new_source]
for node_id, paths in existing_nodes_with_paths.items():
for p_str in paths:
all_sources.append({'node_id': node_id, 'path': p_str})
for node_id, path_entries in existing_nodes_with_paths.items():
for entry in path_entries:
if isinstance(entry, dict):
all_sources.append({
'node_id': node_id,
'path': entry['path'],
'parent_attr': entry.get('parent_attr', ''),
'meaningful_attr': entry.get('meaningful_attr', self._extract_meaningful_attribute(entry['path'], entry.get('parent_attr', '')))
})
else:
# Handle legacy string-only entries
all_sources.append({
'node_id': node_id,
'path': str(entry),
'parent_attr': '',
'meaningful_attr': self._extract_meaningful_attribute(str(entry))
})
all_correlations.append({
'value': value,
@ -163,11 +225,7 @@ class GraphManager:
# Skip creating correlation node - would be redundant
continue
# *** CHANGE START ***
# The overly aggressive filtering logic has been removed.
# All nodes involved in the correlation will now be used.
eligible_nodes = set(corr['nodes'])
# *** CHANGE END ***
if len(eligible_nodes) < 2:
# Need at least 2 nodes to create a correlation
@ -187,11 +245,12 @@ class GraphManager:
metadata={'values': [value], 'sources': corr['sources'],
'correlated_nodes': list(eligible_nodes)})
# Create edges from eligible nodes to this correlation node
# Create edges from eligible nodes to this correlation node with better labeling
for c_node_id in eligible_nodes:
if self.graph.has_node(c_node_id):
attribute = corr['sources'][0]['path'].split('.')[-1]
relationship_type = f"c_{attribute}"
# Find the best attribute name for this node
meaningful_attr = self._find_best_attribute_name_for_node(c_node_id, corr['sources'])
relationship_type = f"c_{meaningful_attr}"
self.add_edge(c_node_id, correlation_node_id, relationship_type, confidence_score=0.9)
self._update_correlation_index(node_id, attributes)
@ -199,10 +258,34 @@ class GraphManager:
self.last_modified = datetime.now(timezone.utc).isoformat()
return is_new_node
# *** CHANGE START ***
# The following function is no longer needed and has been removed to avoid confusion.
# def _filter_nodes_without_direct_edges(self, node_set: set) -> set:
# *** CHANGE END ***
def _find_best_attribute_name_for_node(self, node_id: str, sources: List[Dict]) -> str:
"""Find the best attribute name for a correlation edge by looking at the sources."""
node_sources = [s for s in sources if s['node_id'] == node_id]
if not node_sources:
return "correlation"
# Use the meaningful_attr if available
for source in node_sources:
meaningful_attr = source.get('meaningful_attr')
if meaningful_attr and meaningful_attr != "unknown":
return meaningful_attr
# Fallback to parent_attr
for source in node_sources:
parent_attr = source.get('parent_attr')
if parent_attr:
return parent_attr
# Last resort - extract from path
for source in node_sources:
path = source.get('path', '')
if path:
extracted = self._extract_meaningful_attribute(path)
if extracted != "unknown":
return extracted
return "correlation"
def _has_direct_edge_bidirectional(self, node_a: str, node_b: str) -> bool:
"""
@ -276,7 +359,7 @@ class GraphManager:
# Create set of unique sources based on (node_id, path) tuples
source_set = set()
for source in existing_sources + new_sources:
source_tuple = (source['node_id'], source['path'])
source_tuple = (source['node_id'], source.get('path', ''))
source_set.add(source_tuple)
# Convert back to list of dictionaries