800 lines
32 KiB
Python
800 lines
32 KiB
Python
# DNScope-reduced/utils/export_manager.py
|
|
|
|
"""
|
|
Centralized export functionality for DNScope.
|
|
Handles all data export operations with forensic integrity and proper formatting.
|
|
ENHANCED: Professional forensic executive summary generation for court-ready documentation.
|
|
"""
|
|
|
|
import json
|
|
from datetime import datetime, timezone
|
|
from typing import Dict, Any, List, Optional, Set, Tuple
|
|
from decimal import Decimal
|
|
from collections import defaultdict, Counter
|
|
import networkx as nx
|
|
|
|
from utils.helpers import _is_valid_domain, _is_valid_ip
|
|
|
|
|
|
class ExportManager:
|
|
"""
|
|
Centralized manager for all DNScope export operations.
|
|
Maintains forensic integrity and provides consistent export formats.
|
|
ENHANCED: Advanced forensic analysis and professional reporting capabilities.
|
|
"""
|
|
|
|
def __init__(self):
|
|
"""Initialize export manager."""
|
|
pass
|
|
|
|
def export_scan_results(self, scanner) -> Dict[str, Any]:
|
|
"""
|
|
Export complete scan results with forensic metadata.
|
|
|
|
Args:
|
|
scanner: Scanner instance with completed scan data
|
|
|
|
Returns:
|
|
Complete scan results dictionary
|
|
"""
|
|
graph_data = self.export_graph_json(scanner.graph)
|
|
audit_trail = scanner.logger.export_audit_trail()
|
|
provider_stats = {}
|
|
|
|
for provider in scanner.providers:
|
|
provider_stats[provider.get_name()] = provider.get_statistics()
|
|
|
|
results = {
|
|
'scan_metadata': {
|
|
'target_domain': scanner.current_target,
|
|
'max_depth': scanner.max_depth,
|
|
'final_status': scanner.status,
|
|
'total_indicators_processed': scanner.indicators_processed,
|
|
'enabled_providers': list(provider_stats.keys()),
|
|
'session_id': scanner.session_id
|
|
},
|
|
'graph_data': graph_data,
|
|
'forensic_audit': audit_trail,
|
|
'provider_statistics': provider_stats,
|
|
'scan_summary': scanner.logger.get_forensic_summary()
|
|
}
|
|
|
|
# Add export metadata
|
|
results['export_metadata'] = {
|
|
'export_timestamp': datetime.now(timezone.utc).isoformat(),
|
|
'export_version': '1.0.0',
|
|
'forensic_integrity': 'maintained'
|
|
}
|
|
|
|
return results
|
|
|
|
def export_targets_list(self, scanner) -> str:
|
|
"""
|
|
Export all discovered domains and IPs as a text file.
|
|
|
|
Args:
|
|
scanner: Scanner instance with graph data
|
|
|
|
Returns:
|
|
Newline-separated list of targets
|
|
"""
|
|
nodes = scanner.graph.get_graph_data().get('nodes', [])
|
|
targets = {
|
|
node['id'] for node in nodes
|
|
if _is_valid_domain(node['id']) or _is_valid_ip(node['id'])
|
|
}
|
|
return "\n".join(sorted(list(targets)))
|
|
|
|
def generate_executive_summary(self, scanner) -> str:
|
|
"""
|
|
ENHANCED: Generate a comprehensive, court-ready forensic executive summary.
|
|
|
|
Args:
|
|
scanner: Scanner instance with completed scan data
|
|
|
|
Returns:
|
|
Professional forensic summary formatted for investigative use
|
|
"""
|
|
report = []
|
|
now = datetime.now(timezone.utc).strftime('%Y-%m-%d %H:%M:%S UTC')
|
|
|
|
# Get comprehensive data for analysis
|
|
graph_data = scanner.graph.get_graph_data()
|
|
nodes = graph_data.get('nodes', [])
|
|
edges = graph_data.get('edges', [])
|
|
audit_trail = scanner.logger.export_audit_trail()
|
|
|
|
# Perform advanced analysis
|
|
infrastructure_analysis = self._analyze_infrastructure_patterns(nodes, edges)
|
|
|
|
# === HEADER AND METADATA ===
|
|
report.extend([
|
|
"=" * 80,
|
|
"DIGITAL INFRASTRUCTURE RECONNAISSANCE REPORT",
|
|
"=" * 80,
|
|
"",
|
|
f"Report Generated: {now}",
|
|
f"Investigation Target: {scanner.current_target}",
|
|
f"Analysis Session: {scanner.session_id}",
|
|
f"Scan Depth: {scanner.max_depth} levels",
|
|
f"Final Status: {scanner.status.upper()}",
|
|
""
|
|
])
|
|
|
|
# === EXECUTIVE SUMMARY ===
|
|
report.extend([
|
|
"EXECUTIVE SUMMARY",
|
|
"-" * 40,
|
|
"",
|
|
f"This report presents the findings of a comprehensive passive reconnaissance analysis "
|
|
f"conducted against the target '{scanner.current_target}'. The investigation employed "
|
|
f"multiple intelligence sources and discovered {len(nodes)} distinct digital entities "
|
|
f"connected through {len(edges)} verified relationships.",
|
|
"",
|
|
f"The analysis reveals a digital infrastructure comprising {infrastructure_analysis['domains']} "
|
|
f"domain names, {infrastructure_analysis['ips']} IP addresses, and {infrastructure_analysis['isps']} "
|
|
f"infrastructure service providers. Certificate transparency analysis identified "
|
|
f"{infrastructure_analysis['cas']} certificate authorities managing the cryptographic "
|
|
f"infrastructure for the investigated entities.",
|
|
"",
|
|
])
|
|
|
|
# === METHODOLOGY ===
|
|
report.extend([
|
|
"INVESTIGATIVE METHODOLOGY",
|
|
"-" * 40,
|
|
"",
|
|
"This analysis employed passive reconnaissance techniques using the following verified data sources:",
|
|
""
|
|
])
|
|
|
|
provider_info = {
|
|
'dns': 'Standard DNS resolution and reverse DNS lookups',
|
|
'crtsh': 'Certificate Transparency database analysis via crt.sh',
|
|
'shodan': 'Internet-connected device intelligence via Shodan API'
|
|
}
|
|
|
|
for provider in scanner.providers:
|
|
provider_name = provider.get_name()
|
|
stats = provider.get_statistics()
|
|
description = provider_info.get(provider_name, f'{provider_name} data provider')
|
|
|
|
report.extend([
|
|
f"• {provider.get_display_name()}: {description}",
|
|
f" - Total Requests: {stats['total_requests']}",
|
|
f" - Success Rate: {stats['success_rate']:.1f}%",
|
|
f" - Relationships Discovered: {stats['relationships_found']}",
|
|
""
|
|
])
|
|
|
|
# === INFRASTRUCTURE ANALYSIS ===
|
|
report.extend([
|
|
"INFRASTRUCTURE ANALYSIS",
|
|
"-" * 40,
|
|
""
|
|
])
|
|
|
|
# Domain Analysis
|
|
if infrastructure_analysis['domains'] > 0:
|
|
report.extend([
|
|
f"Domain Name Infrastructure ({infrastructure_analysis['domains']} entities):",
|
|
""
|
|
])
|
|
|
|
domain_details = self._get_detailed_domain_analysis(nodes, edges)
|
|
for domain_info in domain_details[:10]: # Top 10 domains
|
|
report.extend([
|
|
f"• {domain_info['domain']}",
|
|
f" - Type: {domain_info['classification']}",
|
|
f" - Connected IPs: {len(domain_info['ips'])}",
|
|
f" - Certificate Status: {domain_info['cert_status']}",
|
|
])
|
|
|
|
if domain_info['security_notes']:
|
|
report.extend([
|
|
f" - Security Notes: {', '.join(domain_info['security_notes'])}",
|
|
])
|
|
report.append("")
|
|
|
|
# IP Address Analysis
|
|
if infrastructure_analysis['ips'] > 0:
|
|
report.extend([
|
|
f"IP Address Infrastructure ({infrastructure_analysis['ips']} entities):",
|
|
""
|
|
])
|
|
|
|
ip_details = self._get_detailed_ip_analysis(nodes, edges)
|
|
for ip_info in ip_details[:8]: # Top 8 IPs
|
|
report.extend([
|
|
f"• {ip_info['ip']} ({ip_info['version']})",
|
|
f" - Associated Domains: {len(ip_info['domains'])}",
|
|
f" - ISP: {ip_info['isp'] or 'Unknown'}",
|
|
f" - Geographic Location: {ip_info['location'] or 'Not determined'}",
|
|
])
|
|
|
|
if ip_info['open_ports']:
|
|
report.extend([
|
|
f" - Exposed Services: {', '.join(map(str, ip_info['open_ports'][:5]))}"
|
|
+ (f" (and {len(ip_info['open_ports']) - 5} more)" if len(ip_info['open_ports']) > 5 else ""),
|
|
])
|
|
report.append("")
|
|
|
|
# === RELATIONSHIP ANALYSIS ===
|
|
report.extend([
|
|
"ENTITY RELATIONSHIP ANALYSIS",
|
|
"-" * 40,
|
|
""
|
|
])
|
|
|
|
# Network topology insights
|
|
topology = self._analyze_network_topology(nodes, edges)
|
|
report.extend([
|
|
f"Network Topology Assessment:",
|
|
f"• Central Hubs: {len(topology['hubs'])} entities serve as primary connection points",
|
|
f"• Isolated Clusters: {len(topology['clusters'])} distinct groupings identified",
|
|
f"• Relationship Density: {topology['density']:.3f} (0=sparse, 1=fully connected)",
|
|
f"• Average Path Length: {topology['avg_path_length']:.2f} degrees of separation",
|
|
""
|
|
])
|
|
|
|
# Key relationships
|
|
key_relationships = self._identify_key_relationships(edges)
|
|
if key_relationships:
|
|
report.extend([
|
|
"Critical Infrastructure Relationships:",
|
|
""
|
|
])
|
|
|
|
for rel in key_relationships[:8]: # Top 8 relationships
|
|
report.extend([
|
|
f"• {rel['source']} → {rel['target']}",
|
|
f" - Relationship: {self._humanize_relationship_type(rel['type'])}",
|
|
f" - Discovery Method: {rel['provider']}",
|
|
""
|
|
])
|
|
|
|
# === CERTIFICATE ANALYSIS ===
|
|
cert_analysis = self._analyze_certificate_infrastructure(nodes)
|
|
if cert_analysis['total_certs'] > 0:
|
|
report.extend([
|
|
"CERTIFICATE INFRASTRUCTURE ANALYSIS",
|
|
"-" * 40,
|
|
"",
|
|
f"Certificate Status Overview:",
|
|
f"• Total Certificates Analyzed: {cert_analysis['total_certs']}",
|
|
f"• Valid Certificates: {cert_analysis['valid']}",
|
|
f"• Expired/Invalid: {cert_analysis['expired']}",
|
|
f"• Certificate Authorities: {len(cert_analysis['cas'])}",
|
|
""
|
|
])
|
|
|
|
if cert_analysis['cas']:
|
|
report.extend([
|
|
"Certificate Authority Distribution:",
|
|
""
|
|
])
|
|
for ca, count in cert_analysis['cas'].most_common(5):
|
|
report.extend([
|
|
f"• {ca}: {count} certificate(s)",
|
|
])
|
|
report.append("")
|
|
|
|
|
|
# === TECHNICAL APPENDIX ===
|
|
report.extend([
|
|
"TECHNICAL APPENDIX",
|
|
"-" * 40,
|
|
"",
|
|
"Data Quality Assessment:",
|
|
f"• Total API Requests: {audit_trail.get('session_metadata', {}).get('total_requests', 0)}",
|
|
f"• Data Providers Used: {len(audit_trail.get('session_metadata', {}).get('providers_used', []))}",
|
|
])
|
|
|
|
correlation_provider = next((p for p in scanner.providers if p.get_name() == 'correlation'), None)
|
|
correlation_count = len(correlation_provider.correlation_index) if correlation_provider else 0
|
|
|
|
report.extend([
|
|
"",
|
|
"Correlation Analysis:",
|
|
f"• Entity Correlations Identified: {correlation_count}",
|
|
f"• Cross-Reference Validation: {self._count_cross_validated_relationships(edges)} relationships verified by multiple sources",
|
|
""
|
|
])
|
|
|
|
# === CONCLUSION ===
|
|
report.extend([
|
|
"CONCLUSION",
|
|
"-" * 40,
|
|
"",
|
|
self._generate_conclusion(scanner.current_target, infrastructure_analysis,
|
|
len(edges)),
|
|
"",
|
|
"This analysis was conducted using passive reconnaissance techniques and represents "
|
|
"the digital infrastructure observable through public data sources at the time of investigation. "
|
|
"All findings are supported by verifiable technical evidence and documented through "
|
|
"a complete audit trail maintained for forensic integrity.",
|
|
"",
|
|
f"Investigation completed: {now}",
|
|
f"Report authenticated by: DNScope v{self._get_version()}",
|
|
"",
|
|
"=" * 80,
|
|
"END OF REPORT",
|
|
"=" * 80
|
|
])
|
|
|
|
return "\n".join(report)
|
|
|
|
def _analyze_infrastructure_patterns(self, nodes: List[Dict], edges: List[Dict]) -> Dict[str, Any]:
|
|
"""Analyze infrastructure patterns and classify entities."""
|
|
analysis = {
|
|
'domains': len([n for n in nodes if n['type'] == 'domain']),
|
|
'ips': len([n for n in nodes if n['type'] == 'ip']),
|
|
'isps': len([n for n in nodes if n['type'] == 'isp']),
|
|
'cas': len([n for n in nodes if n['type'] == 'ca']),
|
|
'correlations': len([n for n in nodes if n['type'] == 'correlation_object'])
|
|
}
|
|
return analysis
|
|
|
|
def _get_detailed_domain_analysis(self, nodes: List[Dict], edges: List[Dict]) -> List[Dict[str, Any]]:
|
|
"""Generate detailed analysis for each domain."""
|
|
domain_nodes = [n for n in nodes if n['type'] == 'domain']
|
|
domain_analysis = []
|
|
|
|
for domain in domain_nodes:
|
|
# Find connected IPs
|
|
connected_ips = [e['to'] for e in edges
|
|
if e['from'] == domain['id'] and _is_valid_ip(e['to'])]
|
|
|
|
# Determine classification
|
|
classification = "Primary Domain"
|
|
if domain['id'].startswith('www.'):
|
|
classification = "Web Interface"
|
|
elif any(subdomain in domain['id'] for subdomain in ['api.', 'mail.', 'smtp.']):
|
|
classification = "Service Endpoint"
|
|
elif domain['id'].count('.') > 1:
|
|
classification = "Subdomain"
|
|
|
|
# Certificate status
|
|
cert_status = self._determine_certificate_status(domain)
|
|
|
|
# Security notes
|
|
security_notes = []
|
|
if cert_status == "Expired/Invalid":
|
|
security_notes.append("Certificate validation issues")
|
|
if len(connected_ips) == 0:
|
|
security_notes.append("No IP resolution found")
|
|
if len(connected_ips) > 5:
|
|
security_notes.append("Multiple IP endpoints")
|
|
|
|
domain_edges = [e for e in edges if e['from'] == domain['id']]
|
|
|
|
domain_analysis.append({
|
|
'domain': domain['id'],
|
|
'classification': classification,
|
|
'ips': connected_ips,
|
|
'cert_status': cert_status,
|
|
'security_notes': security_notes,
|
|
})
|
|
|
|
# Sort by number of connections (most connected first)
|
|
return sorted(domain_analysis, key=lambda x: len(x['ips']), reverse=True)
|
|
|
|
def _get_detailed_ip_analysis(self, nodes: List[Dict], edges: List[Dict]) -> List[Dict[str, Any]]:
|
|
"""Generate detailed analysis for each IP address."""
|
|
ip_nodes = [n for n in nodes if n['type'] == 'ip']
|
|
ip_analysis = []
|
|
|
|
for ip in ip_nodes:
|
|
# Find connected domains
|
|
connected_domains = [e['from'] for e in edges
|
|
if e['to'] == ip['id'] and _is_valid_domain(e['from'])]
|
|
|
|
# Extract metadata from attributes
|
|
ip_version = "IPv4"
|
|
location = None
|
|
isp = None
|
|
open_ports = []
|
|
|
|
for attr in ip.get('attributes', []):
|
|
if attr.get('name') == 'country':
|
|
location = attr.get('value')
|
|
elif attr.get('name') == 'org':
|
|
isp = attr.get('value')
|
|
elif attr.get('name') == 'shodan_open_port':
|
|
open_ports.append(attr.get('value'))
|
|
elif 'ipv6' in str(attr.get('metadata', {})).lower():
|
|
ip_version = "IPv6"
|
|
|
|
# Find ISP from relationships
|
|
if not isp:
|
|
isp_edges = [e for e in edges if e['from'] == ip['id'] and e['label'].endswith('_isp')]
|
|
isp = isp_edges[0]['to'] if isp_edges else None
|
|
|
|
ip_analysis.append({
|
|
'ip': ip['id'],
|
|
'version': ip_version,
|
|
'domains': connected_domains,
|
|
'isp': isp,
|
|
'location': location,
|
|
'open_ports': open_ports
|
|
})
|
|
|
|
# Sort by number of connected domains
|
|
return sorted(ip_analysis, key=lambda x: len(x['domains']), reverse=True)
|
|
|
|
def _analyze_network_topology(self, nodes: List[Dict], edges: List[Dict]) -> Dict[str, Any]:
|
|
"""Analyze network topology and identify key structural patterns."""
|
|
if not nodes or not edges:
|
|
return {'hubs': [], 'clusters': [], 'density': 0, 'avg_path_length': 0}
|
|
|
|
# Create NetworkX graph
|
|
G = nx.DiGraph()
|
|
for node in nodes:
|
|
G.add_node(node['id'])
|
|
for edge in edges:
|
|
G.add_edge(edge['from'], edge['to'])
|
|
|
|
# Convert to undirected for certain analyses
|
|
G_undirected = G.to_undirected()
|
|
|
|
# Identify hubs (nodes with high degree centrality)
|
|
centrality = nx.degree_centrality(G_undirected)
|
|
hub_threshold = max(centrality.values()) * 0.7 if centrality else 0
|
|
hubs = [node for node, cent in centrality.items() if cent >= hub_threshold]
|
|
|
|
# Find connected components (clusters)
|
|
clusters = list(nx.connected_components(G_undirected))
|
|
|
|
# Calculate density
|
|
density = nx.density(G_undirected)
|
|
|
|
# Calculate average path length (for largest component)
|
|
if G_undirected.number_of_nodes() > 1:
|
|
largest_cc = max(nx.connected_components(G_undirected), key=len)
|
|
subgraph = G_undirected.subgraph(largest_cc)
|
|
try:
|
|
avg_path_length = nx.average_shortest_path_length(subgraph)
|
|
except:
|
|
avg_path_length = 0
|
|
else:
|
|
avg_path_length = 0
|
|
|
|
return {
|
|
'hubs': hubs,
|
|
'clusters': clusters,
|
|
'density': density,
|
|
'avg_path_length': avg_path_length
|
|
}
|
|
|
|
def _identify_key_relationships(self, edges: List[Dict]) -> List[Dict[str, Any]]:
|
|
"""Identify the most significant relationships in the infrastructure."""
|
|
# Score relationships by type importance
|
|
relationship_importance = {
|
|
'dns_a_record': 0.9,
|
|
'dns_aaaa_record': 0.9,
|
|
'crtsh_cert_issuer': 0.8,
|
|
'shodan_isp': 0.8,
|
|
'crtsh_san_certificate': 0.7,
|
|
'dns_mx_record': 0.7,
|
|
'dns_ns_record': 0.7
|
|
}
|
|
|
|
edges = []
|
|
for edge in edges:
|
|
type_weight = relationship_importance.get(edge.get('label', ''), 0.5)
|
|
|
|
edges.append({
|
|
'source': edge['from'],
|
|
'target': edge['to'],
|
|
'type': edge.get('label', ''),
|
|
'provider': edge.get('source_provider', ''),
|
|
})
|
|
|
|
# Return top relationships by score
|
|
return sorted(edges, key=lambda x: x['score'], reverse=True)
|
|
|
|
def _analyze_certificate_infrastructure(self, nodes: List[Dict]) -> Dict[str, Any]:
|
|
"""Analyze certificate infrastructure across all domains."""
|
|
domain_nodes = [n for n in nodes if n['type'] == 'domain']
|
|
ca_nodes = [n for n in nodes if n['type'] == 'ca']
|
|
|
|
valid_certs = 0
|
|
expired_certs = 0
|
|
total_certs = 0
|
|
cas = Counter()
|
|
|
|
for domain in domain_nodes:
|
|
for attr in domain.get('attributes', []):
|
|
if attr.get('name') == 'cert_is_currently_valid':
|
|
total_certs += 1
|
|
if attr.get('value') is True:
|
|
valid_certs += 1
|
|
else:
|
|
expired_certs += 1
|
|
elif attr.get('name') == 'cert_issuer_name':
|
|
issuer = attr.get('value')
|
|
if issuer:
|
|
cas[issuer] += 1
|
|
|
|
return {
|
|
'total_certs': total_certs,
|
|
'valid': valid_certs,
|
|
'expired': expired_certs,
|
|
'cas': cas
|
|
}
|
|
|
|
def _has_expired_certificates(self, domain_node: Dict) -> bool:
|
|
"""Check if domain has expired certificates."""
|
|
for attr in domain_node.get('attributes', []):
|
|
if (attr.get('name') == 'cert_is_currently_valid' and
|
|
attr.get('value') is False):
|
|
return True
|
|
return False
|
|
|
|
def _determine_certificate_status(self, domain_node: Dict) -> str:
|
|
"""Determine the certificate status for a domain."""
|
|
has_valid = False
|
|
has_expired = False
|
|
has_any = False
|
|
|
|
for attr in domain_node.get('attributes', []):
|
|
if attr.get('name') == 'cert_is_currently_valid':
|
|
has_any = True
|
|
if attr.get('value') is True:
|
|
has_valid = True
|
|
else:
|
|
has_expired = True
|
|
|
|
if not has_any:
|
|
return "No Certificate Data"
|
|
elif has_valid and not has_expired:
|
|
return "Valid"
|
|
elif has_expired and not has_valid:
|
|
return "Expired/Invalid"
|
|
else:
|
|
return "Mixed Status"
|
|
|
|
def _humanize_relationship_type(self, rel_type: str) -> str:
|
|
"""Convert technical relationship types to human-readable descriptions."""
|
|
type_map = {
|
|
'dns_a_record': 'DNS A Record Resolution',
|
|
'dns_aaaa_record': 'DNS AAAA Record (IPv6) Resolution',
|
|
'dns_mx_record': 'Email Server (MX) Configuration',
|
|
'dns_ns_record': 'Name Server Delegation',
|
|
'dns_cname_record': 'DNS Alias (CNAME) Resolution',
|
|
'crtsh_cert_issuer': 'SSL Certificate Issuer Relationship',
|
|
'crtsh_san_certificate': 'Shared SSL Certificate',
|
|
'shodan_isp': 'Internet Service Provider Assignment',
|
|
'shodan_a_record': 'IP-to-Domain Resolution (Shodan)',
|
|
'dns_ptr_record': 'Reverse DNS Resolution'
|
|
}
|
|
return type_map.get(rel_type, rel_type.replace('_', ' ').title())
|
|
|
|
def _count_cross_validated_relationships(self, edges: List[Dict]) -> int:
|
|
"""Count relationships verified by multiple providers."""
|
|
# Group edges by source-target pair
|
|
edge_pairs = defaultdict(list)
|
|
for edge in edges:
|
|
pair_key = f"{edge['from']}->{edge['to']}"
|
|
edge_pairs[pair_key].append(edge.get('source_provider', ''))
|
|
|
|
# Count pairs with multiple providers
|
|
cross_validated = 0
|
|
for pair, providers in edge_pairs.items():
|
|
if len(set(providers)) > 1: # Multiple unique providers
|
|
cross_validated += 1
|
|
|
|
return cross_validated
|
|
|
|
def _generate_security_recommendations(self, infrastructure_analysis: Dict) -> List[str]:
|
|
"""Generate actionable security recommendations."""
|
|
recommendations = []
|
|
|
|
# Check for complex infrastructure
|
|
if infrastructure_analysis['ips'] > 10:
|
|
recommendations.append(
|
|
"Document and validate the necessity of extensive IP address infrastructure"
|
|
)
|
|
|
|
if infrastructure_analysis['correlations'] > 5:
|
|
recommendations.append(
|
|
"Investigate shared infrastructure components for operational security implications"
|
|
)
|
|
|
|
if not recommendations:
|
|
recommendations.append(
|
|
"Continue monitoring for changes in the identified digital infrastructure"
|
|
)
|
|
|
|
return recommendations
|
|
|
|
def _generate_conclusion(self, target: str, infrastructure_analysis: Dict, total_relationships: int) -> str:
|
|
"""Generate a professional conclusion for the report."""
|
|
conclusion_parts = [
|
|
f"The passive reconnaissance analysis of '{target}' has successfully mapped "
|
|
f"a digital infrastructure ecosystem consisting of {infrastructure_analysis['domains']} "
|
|
f"domain names, {infrastructure_analysis['ips']} IP addresses, and "
|
|
f"{total_relationships} verified inter-entity relationships."
|
|
]
|
|
|
|
conclusion_parts.append(
|
|
"All findings in this report are based on publicly available information and "
|
|
"passive reconnaissance techniques. The analysis maintains full forensic integrity "
|
|
"with complete audit trails for all data collection activities."
|
|
)
|
|
|
|
return " ".join(conclusion_parts)
|
|
|
|
def _count_bidirectional_relationships(self, graph) -> int:
|
|
"""Count bidirectional relationships in the graph."""
|
|
count = 0
|
|
for u, v in graph.edges():
|
|
if graph.has_edge(v, u):
|
|
count += 1
|
|
return count // 2 # Each pair counted twice
|
|
|
|
def _identify_hub_nodes(self, graph, nodes: List[Dict]) -> List[str]:
|
|
"""Identify nodes that serve as major hubs in the network."""
|
|
if not graph.nodes():
|
|
return []
|
|
|
|
degree_centrality = nx.degree_centrality(graph.to_undirected())
|
|
threshold = max(degree_centrality.values()) * 0.8 if degree_centrality else 0
|
|
|
|
return [node for node, centrality in degree_centrality.items()
|
|
if centrality >= threshold]
|
|
|
|
def _get_version(self) -> str:
|
|
"""Get DNScope version for report authentication."""
|
|
return "1.0.0-forensic"
|
|
|
|
def export_graph_json(self, graph_manager) -> Dict[str, Any]:
|
|
"""
|
|
Export complete graph data as a JSON-serializable dictionary.
|
|
Moved from GraphManager to centralize export functionality.
|
|
|
|
Args:
|
|
graph_manager: GraphManager instance with graph data
|
|
|
|
Returns:
|
|
Complete graph data with export metadata
|
|
"""
|
|
graph_data = nx.node_link_data(graph_manager.graph, edges="edges")
|
|
|
|
return {
|
|
'export_metadata': {
|
|
'export_timestamp': datetime.now(timezone.utc).isoformat(),
|
|
'graph_creation_time': graph_manager.creation_time,
|
|
'last_modified': graph_manager.last_modified,
|
|
'total_nodes': graph_manager.get_node_count(),
|
|
'total_edges': graph_manager.get_edge_count(),
|
|
'graph_format': 'DNScope_v1_unified_model'
|
|
},
|
|
'graph': graph_data,
|
|
'statistics': graph_manager.get_statistics()
|
|
}
|
|
|
|
def serialize_to_json(self, data: Dict[str, Any], indent: int = 2) -> str:
|
|
"""
|
|
Serialize data to JSON with custom handling for non-serializable objects.
|
|
|
|
Args:
|
|
data: Data to serialize
|
|
indent: JSON indentation level
|
|
|
|
Returns:
|
|
JSON string representation
|
|
"""
|
|
try:
|
|
return json.dumps(data, indent=indent, cls=CustomJSONEncoder, ensure_ascii=False)
|
|
except Exception:
|
|
# Fallback to aggressive cleaning
|
|
cleaned_data = self._clean_for_json(data)
|
|
return json.dumps(cleaned_data, indent=indent, ensure_ascii=False)
|
|
|
|
def _clean_for_json(self, obj, max_depth: int = 10, current_depth: int = 0) -> Any:
|
|
"""
|
|
Recursively clean an object to make it JSON serializable.
|
|
Handles circular references and problematic object types.
|
|
|
|
Args:
|
|
obj: Object to clean
|
|
max_depth: Maximum recursion depth
|
|
current_depth: Current recursion depth
|
|
|
|
Returns:
|
|
JSON-serializable object
|
|
"""
|
|
if current_depth > max_depth:
|
|
return f"<max_depth_exceeded_{type(obj).__name__}>"
|
|
|
|
if obj is None or isinstance(obj, (bool, int, float, str)):
|
|
return obj
|
|
elif isinstance(obj, datetime):
|
|
return obj.isoformat()
|
|
elif isinstance(obj, (set, frozenset)):
|
|
return list(obj)
|
|
elif isinstance(obj, dict):
|
|
cleaned = {}
|
|
for key, value in obj.items():
|
|
try:
|
|
# Ensure key is string
|
|
clean_key = str(key) if not isinstance(key, str) else key
|
|
cleaned[clean_key] = self._clean_for_json(value, max_depth, current_depth + 1)
|
|
except Exception:
|
|
cleaned[str(key)] = f"<serialization_error_{type(value).__name__}>"
|
|
return cleaned
|
|
elif isinstance(obj, (list, tuple)):
|
|
cleaned = []
|
|
for item in obj:
|
|
try:
|
|
cleaned.append(self._clean_for_json(item, max_depth, current_depth + 1))
|
|
except Exception:
|
|
cleaned.append(f"<serialization_error_{type(item).__name__}>")
|
|
return cleaned
|
|
elif hasattr(obj, '__dict__'):
|
|
try:
|
|
return self._clean_for_json(obj.__dict__, max_depth, current_depth + 1)
|
|
except Exception:
|
|
return str(obj)
|
|
elif hasattr(obj, 'value'):
|
|
# For enum-like objects
|
|
return obj.value
|
|
else:
|
|
return str(obj)
|
|
|
|
def generate_filename(self, target: str, export_type: str, timestamp: Optional[datetime] = None) -> str:
|
|
"""
|
|
Generate standardized filename for exports.
|
|
|
|
Args:
|
|
target: Target domain/IP being scanned
|
|
export_type: Type of export (json, txt, summary)
|
|
timestamp: Optional timestamp (defaults to now)
|
|
|
|
Returns:
|
|
Formatted filename with forensic naming convention
|
|
"""
|
|
if timestamp is None:
|
|
timestamp = datetime.now(timezone.utc)
|
|
|
|
timestamp_str = timestamp.strftime('%Y%m%d_%H%M%S')
|
|
safe_target = "".join(c for c in target if c.isalnum() or c in ('-', '_', '.')).rstrip()
|
|
|
|
extension_map = {
|
|
'json': 'json',
|
|
'txt': 'txt',
|
|
'summary': 'txt',
|
|
'targets': 'txt'
|
|
}
|
|
|
|
extension = extension_map.get(export_type, 'txt')
|
|
return f"DNScope_{export_type}_{safe_target}_{timestamp_str}.{extension}"
|
|
|
|
|
|
class CustomJSONEncoder(json.JSONEncoder):
|
|
"""Custom JSON encoder to handle non-serializable objects."""
|
|
|
|
def default(self, obj):
|
|
if isinstance(obj, datetime):
|
|
return obj.isoformat()
|
|
elif isinstance(obj, set):
|
|
return list(obj)
|
|
elif isinstance(obj, Decimal):
|
|
return float(obj)
|
|
elif hasattr(obj, '__dict__'):
|
|
# For custom objects, try to serialize their dict representation
|
|
try:
|
|
return obj.__dict__
|
|
except:
|
|
return str(obj)
|
|
elif hasattr(obj, 'value') and hasattr(obj, 'name'):
|
|
# For enum objects
|
|
return obj.value
|
|
else:
|
|
# For any other non-serializable object, convert to string
|
|
return str(obj)
|
|
|
|
|
|
# Global export manager instance
|
|
export_manager = ExportManager() |