798 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			798 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# DNScope-reduced/utils/export_manager.py
 | 
						|
 | 
						|
"""
 | 
						|
Centralized export functionality for DNScope.
 | 
						|
Handles all data export operations with forensic integrity and proper formatting.
 | 
						|
ENHANCED: Professional forensic executive summary generation for court-ready documentation.
 | 
						|
"""
 | 
						|
 | 
						|
import json
 | 
						|
from datetime import datetime, timezone
 | 
						|
from typing import Dict, Any, List, Optional, Set, Tuple
 | 
						|
from decimal import Decimal
 | 
						|
from collections import defaultdict, Counter
 | 
						|
import networkx as nx
 | 
						|
 | 
						|
from utils.helpers import _is_valid_domain, _is_valid_ip
 | 
						|
 | 
						|
 | 
						|
class ExportManager:
 | 
						|
    """
 | 
						|
    Centralized manager for all DNScope export operations.
 | 
						|
    Maintains forensic integrity and provides consistent export formats.
 | 
						|
    ENHANCED: Advanced forensic analysis and professional reporting capabilities.
 | 
						|
    """
 | 
						|
    
 | 
						|
    def __init__(self):
 | 
						|
        """Initialize export manager."""
 | 
						|
        pass
 | 
						|
    
 | 
						|
    def export_scan_results(self, scanner) -> Dict[str, Any]:
 | 
						|
        """
 | 
						|
        Export complete scan results with forensic metadata.
 | 
						|
        
 | 
						|
        Args:
 | 
						|
            scanner: Scanner instance with completed scan data
 | 
						|
            
 | 
						|
        Returns:
 | 
						|
            Complete scan results dictionary
 | 
						|
        """
 | 
						|
        graph_data = self.export_graph_json(scanner.graph)
 | 
						|
        audit_trail = scanner.logger.export_audit_trail()
 | 
						|
        provider_stats = {}
 | 
						|
        
 | 
						|
        for provider in scanner.providers:
 | 
						|
            provider_stats[provider.get_name()] = provider.get_statistics()
 | 
						|
        
 | 
						|
        results = {
 | 
						|
            'scan_metadata': {
 | 
						|
                'target_domain': scanner.current_target,
 | 
						|
                'max_depth': scanner.max_depth,
 | 
						|
                'final_status': scanner.status,
 | 
						|
                'total_indicators_processed': scanner.indicators_processed,
 | 
						|
                'enabled_providers': list(provider_stats.keys()),
 | 
						|
                'session_id': scanner.session_id
 | 
						|
            },
 | 
						|
            'graph_data': graph_data,
 | 
						|
            'forensic_audit': audit_trail,
 | 
						|
            'provider_statistics': provider_stats,
 | 
						|
            'scan_summary': scanner.logger.get_forensic_summary()
 | 
						|
        }
 | 
						|
        
 | 
						|
        # Add export metadata
 | 
						|
        results['export_metadata'] = {
 | 
						|
            'export_timestamp': datetime.now(timezone.utc).isoformat(),
 | 
						|
            'export_version': '1.0.0',
 | 
						|
            'forensic_integrity': 'maintained'
 | 
						|
        }
 | 
						|
        
 | 
						|
        return results
 | 
						|
    
 | 
						|
    def export_targets_list(self, scanner) -> str:
 | 
						|
        """
 | 
						|
        Export all discovered domains and IPs as a text file.
 | 
						|
        
 | 
						|
        Args:
 | 
						|
            scanner: Scanner instance with graph data
 | 
						|
            
 | 
						|
        Returns:
 | 
						|
            Newline-separated list of targets
 | 
						|
        """
 | 
						|
        nodes = scanner.graph.get_graph_data().get('nodes', [])
 | 
						|
        targets = {
 | 
						|
            node['id'] for node in nodes 
 | 
						|
            if _is_valid_domain(node['id']) or _is_valid_ip(node['id'])
 | 
						|
        }
 | 
						|
        return "\n".join(sorted(list(targets)))
 | 
						|
    
 | 
						|
    def generate_executive_summary(self, scanner) -> str:
 | 
						|
        """
 | 
						|
        ENHANCED: Generate a comprehensive, court-ready forensic executive summary.
 | 
						|
        
 | 
						|
        Args:
 | 
						|
            scanner: Scanner instance with completed scan data
 | 
						|
            
 | 
						|
        Returns:
 | 
						|
            Professional forensic summary formatted for investigative use
 | 
						|
        """
 | 
						|
        report = []
 | 
						|
        now = datetime.now(timezone.utc).strftime('%Y-%m-%d %H:%M:%S UTC')
 | 
						|
        
 | 
						|
        # Get comprehensive data for analysis
 | 
						|
        graph_data = scanner.graph.get_graph_data()
 | 
						|
        nodes = graph_data.get('nodes', [])
 | 
						|
        edges = graph_data.get('edges', [])
 | 
						|
        audit_trail = scanner.logger.export_audit_trail()
 | 
						|
        
 | 
						|
        # Perform advanced analysis
 | 
						|
        infrastructure_analysis = self._analyze_infrastructure_patterns(nodes, edges)
 | 
						|
        
 | 
						|
        # === HEADER AND METADATA ===
 | 
						|
        report.extend([
 | 
						|
            "=" * 80,
 | 
						|
            "DIGITAL INFRASTRUCTURE RECONNAISSANCE REPORT",
 | 
						|
            "=" * 80,
 | 
						|
            "",
 | 
						|
            f"Report Generated: {now}",
 | 
						|
            f"Investigation Target: {scanner.current_target}",
 | 
						|
            f"Analysis Session: {scanner.session_id}",
 | 
						|
            f"Scan Depth: {scanner.max_depth} levels",
 | 
						|
            f"Final Status: {scanner.status.upper()}",
 | 
						|
            ""
 | 
						|
        ])
 | 
						|
        
 | 
						|
        # === EXECUTIVE SUMMARY ===
 | 
						|
        report.extend([
 | 
						|
            "EXECUTIVE SUMMARY",
 | 
						|
            "-" * 40,
 | 
						|
            "",
 | 
						|
            f"This report presents the findings of a comprehensive passive reconnaissance analysis "
 | 
						|
            f"conducted against the target '{scanner.current_target}'. The investigation employed "
 | 
						|
            f"multiple intelligence sources and discovered {len(nodes)} distinct digital entities "
 | 
						|
            f"connected through {len(edges)} verified relationships.",
 | 
						|
            "",
 | 
						|
            f"The analysis reveals a digital infrastructure comprising {infrastructure_analysis['domains']} "
 | 
						|
            f"domain names, {infrastructure_analysis['ips']} IP addresses, and {infrastructure_analysis['isps']} "
 | 
						|
            f"infrastructure service providers. Certificate transparency analysis identified "
 | 
						|
            f"{infrastructure_analysis['cas']} certificate authorities managing the cryptographic "
 | 
						|
            f"infrastructure for the investigated entities.",
 | 
						|
            "",
 | 
						|
        ])
 | 
						|
        
 | 
						|
        # === METHODOLOGY ===
 | 
						|
        report.extend([
 | 
						|
            "INVESTIGATIVE METHODOLOGY",
 | 
						|
            "-" * 40,
 | 
						|
            "",
 | 
						|
            "This analysis employed passive reconnaissance techniques using the following verified data sources:",
 | 
						|
            ""
 | 
						|
        ])
 | 
						|
        
 | 
						|
        provider_info = {
 | 
						|
            'dns': 'Standard DNS resolution and reverse DNS lookups',
 | 
						|
            'crtsh': 'Certificate Transparency database analysis via crt.sh',
 | 
						|
            'shodan': 'Internet-connected device intelligence via Shodan API'
 | 
						|
        }
 | 
						|
        
 | 
						|
        for provider in scanner.providers:
 | 
						|
            provider_name = provider.get_name()
 | 
						|
            stats = provider.get_statistics()
 | 
						|
            description = provider_info.get(provider_name, f'{provider_name} data provider')
 | 
						|
            
 | 
						|
            report.extend([
 | 
						|
                f"• {provider.get_display_name()}: {description}",
 | 
						|
                f"  - Total Requests: {stats['total_requests']}",
 | 
						|
                f"  - Success Rate: {stats['success_rate']:.1f}%",
 | 
						|
                f"  - Relationships Discovered: {stats['relationships_found']}",
 | 
						|
                ""
 | 
						|
            ])
 | 
						|
        
 | 
						|
        # === INFRASTRUCTURE ANALYSIS ===
 | 
						|
        report.extend([
 | 
						|
            "INFRASTRUCTURE ANALYSIS",
 | 
						|
            "-" * 40,
 | 
						|
            ""
 | 
						|
        ])
 | 
						|
        
 | 
						|
        # Domain Analysis
 | 
						|
        if infrastructure_analysis['domains'] > 0:
 | 
						|
            report.extend([
 | 
						|
                f"Domain Name Infrastructure ({infrastructure_analysis['domains']} entities):",
 | 
						|
                ""
 | 
						|
            ])
 | 
						|
            
 | 
						|
            domain_details = self._get_detailed_domain_analysis(nodes, edges)
 | 
						|
            for domain_info in domain_details[:10]:  # Top 10 domains
 | 
						|
                report.extend([
 | 
						|
                    f"• {domain_info['domain']}",
 | 
						|
                    f"  - Type: {domain_info['classification']}",
 | 
						|
                    f"  - Connected IPs: {len(domain_info['ips'])}",
 | 
						|
                    f"  - Certificate Status: {domain_info['cert_status']}",
 | 
						|
                ])
 | 
						|
                
 | 
						|
                if domain_info['security_notes']:
 | 
						|
                    report.extend([
 | 
						|
                        f"  - Security Notes: {', '.join(domain_info['security_notes'])}",
 | 
						|
                    ])
 | 
						|
                report.append("")
 | 
						|
        
 | 
						|
        # IP Address Analysis
 | 
						|
        if infrastructure_analysis['ips'] > 0:
 | 
						|
            report.extend([
 | 
						|
                f"IP Address Infrastructure ({infrastructure_analysis['ips']} entities):",
 | 
						|
                ""
 | 
						|
            ])
 | 
						|
            
 | 
						|
            ip_details = self._get_detailed_ip_analysis(nodes, edges)
 | 
						|
            for ip_info in ip_details[:8]:  # Top 8 IPs
 | 
						|
                report.extend([
 | 
						|
                    f"• {ip_info['ip']} ({ip_info['version']})",
 | 
						|
                    f"  - Associated Domains: {len(ip_info['domains'])}",
 | 
						|
                    f"  - ISP: {ip_info['isp'] or 'Unknown'}",
 | 
						|
                    f"  - Geographic Location: {ip_info['location'] or 'Not determined'}",
 | 
						|
                ])
 | 
						|
                
 | 
						|
                if ip_info['open_ports']:
 | 
						|
                    report.extend([
 | 
						|
                        f"  - Exposed Services: {', '.join(map(str, ip_info['open_ports'][:5]))}"
 | 
						|
                        + (f" (and {len(ip_info['open_ports']) - 5} more)" if len(ip_info['open_ports']) > 5 else ""),
 | 
						|
                    ])
 | 
						|
                report.append("")
 | 
						|
        
 | 
						|
        # === RELATIONSHIP ANALYSIS ===
 | 
						|
        report.extend([
 | 
						|
            "ENTITY RELATIONSHIP ANALYSIS",
 | 
						|
            "-" * 40,
 | 
						|
            ""
 | 
						|
        ])
 | 
						|
        
 | 
						|
        # Network topology insights
 | 
						|
        topology = self._analyze_network_topology(nodes, edges)
 | 
						|
        report.extend([
 | 
						|
            f"Network Topology Assessment:",
 | 
						|
            f"• Central Hubs: {len(topology['hubs'])} entities serve as primary connection points",
 | 
						|
            f"• Isolated Clusters: {len(topology['clusters'])} distinct groupings identified",
 | 
						|
            f"• Relationship Density: {topology['density']:.3f} (0=sparse, 1=fully connected)",
 | 
						|
            f"• Average Path Length: {topology['avg_path_length']:.2f} degrees of separation",
 | 
						|
            ""
 | 
						|
        ])
 | 
						|
        
 | 
						|
        # Key relationships
 | 
						|
        key_relationships = self._identify_key_relationships(edges)
 | 
						|
        if key_relationships:
 | 
						|
            report.extend([
 | 
						|
                "Critical Infrastructure Relationships:",
 | 
						|
                ""
 | 
						|
            ])
 | 
						|
            
 | 
						|
            for rel in key_relationships[:8]:  # Top 8 relationships
 | 
						|
                report.extend([
 | 
						|
                    f"• {rel['source']} → {rel['target']}",
 | 
						|
                    f"  - Relationship: {self._humanize_relationship_type(rel['type'])}",
 | 
						|
                    f"  - Discovery Method: {rel['provider']}",
 | 
						|
                    ""
 | 
						|
                ])
 | 
						|
        
 | 
						|
        # === CERTIFICATE ANALYSIS ===
 | 
						|
        cert_analysis = self._analyze_certificate_infrastructure(nodes)
 | 
						|
        if cert_analysis['total_certs'] > 0:
 | 
						|
            report.extend([
 | 
						|
                "CERTIFICATE INFRASTRUCTURE ANALYSIS",
 | 
						|
                "-" * 40,
 | 
						|
                "",
 | 
						|
                f"Certificate Status Overview:",
 | 
						|
                f"• Total Certificates Analyzed: {cert_analysis['total_certs']}",
 | 
						|
                f"• Valid Certificates: {cert_analysis['valid']}",
 | 
						|
                f"• Expired/Invalid: {cert_analysis['expired']}",
 | 
						|
                f"• Certificate Authorities: {len(cert_analysis['cas'])}",
 | 
						|
                ""
 | 
						|
            ])
 | 
						|
            
 | 
						|
            if cert_analysis['cas']:
 | 
						|
                report.extend([
 | 
						|
                    "Certificate Authority Distribution:",
 | 
						|
                    ""
 | 
						|
                ])
 | 
						|
                for ca, count in cert_analysis['cas'].most_common(5):
 | 
						|
                    report.extend([
 | 
						|
                        f"• {ca}: {count} certificate(s)",
 | 
						|
                    ])
 | 
						|
                report.append("")
 | 
						|
        
 | 
						|
        
 | 
						|
        # === TECHNICAL APPENDIX ===
 | 
						|
        report.extend([
 | 
						|
            "TECHNICAL APPENDIX",
 | 
						|
            "-" * 40,
 | 
						|
            "",
 | 
						|
            "Data Quality Assessment:",
 | 
						|
            f"• Total API Requests: {audit_trail.get('session_metadata', {}).get('total_requests', 0)}",
 | 
						|
            f"• Data Providers Used: {len(audit_trail.get('session_metadata', {}).get('providers_used', []))}",
 | 
						|
        ])
 | 
						|
        
 | 
						|
        report.extend([
 | 
						|
            "",
 | 
						|
            "Correlation Analysis:",
 | 
						|
            f"• Entity Correlations Identified: {len(scanner.graph.correlation_index)}",
 | 
						|
            f"• Cross-Reference Validation: {self._count_cross_validated_relationships(edges)} relationships verified by multiple sources",
 | 
						|
            ""
 | 
						|
        ])
 | 
						|
        
 | 
						|
        # === CONCLUSION ===
 | 
						|
        report.extend([
 | 
						|
            "CONCLUSION",
 | 
						|
            "-" * 40,
 | 
						|
            "",
 | 
						|
            self._generate_conclusion(scanner.current_target, infrastructure_analysis, 
 | 
						|
                                    len(edges)),
 | 
						|
            "",
 | 
						|
            "This analysis was conducted using passive reconnaissance techniques and represents "
 | 
						|
            "the digital infrastructure observable through public data sources at the time of investigation. "
 | 
						|
            "All findings are supported by verifiable technical evidence and documented through "
 | 
						|
            "a complete audit trail maintained for forensic integrity.",
 | 
						|
            "",
 | 
						|
            f"Investigation completed: {now}",
 | 
						|
            f"Report authenticated by: DNScope v{self._get_version()}",
 | 
						|
            "",
 | 
						|
            "=" * 80,
 | 
						|
            "END OF REPORT",
 | 
						|
            "=" * 80
 | 
						|
        ])
 | 
						|
        
 | 
						|
        return "\n".join(report)
 | 
						|
    
 | 
						|
    def _analyze_infrastructure_patterns(self, nodes: List[Dict], edges: List[Dict]) -> Dict[str, Any]:
 | 
						|
        """Analyze infrastructure patterns and classify entities."""
 | 
						|
        analysis = {
 | 
						|
            'domains': len([n for n in nodes if n['type'] == 'domain']),
 | 
						|
            'ips': len([n for n in nodes if n['type'] == 'ip']),
 | 
						|
            'isps': len([n for n in nodes if n['type'] == 'isp']),
 | 
						|
            'cas': len([n for n in nodes if n['type'] == 'ca']),
 | 
						|
            'correlations': len([n for n in nodes if n['type'] == 'correlation_object'])
 | 
						|
        }
 | 
						|
        return analysis
 | 
						|
    
 | 
						|
    def _get_detailed_domain_analysis(self, nodes: List[Dict], edges: List[Dict]) -> List[Dict[str, Any]]:
 | 
						|
        """Generate detailed analysis for each domain."""
 | 
						|
        domain_nodes = [n for n in nodes if n['type'] == 'domain']
 | 
						|
        domain_analysis = []
 | 
						|
        
 | 
						|
        for domain in domain_nodes:
 | 
						|
            # Find connected IPs
 | 
						|
            connected_ips = [e['to'] for e in edges 
 | 
						|
                           if e['from'] == domain['id'] and _is_valid_ip(e['to'])]
 | 
						|
            
 | 
						|
            # Determine classification
 | 
						|
            classification = "Primary Domain"
 | 
						|
            if domain['id'].startswith('www.'):
 | 
						|
                classification = "Web Interface"
 | 
						|
            elif any(subdomain in domain['id'] for subdomain in ['api.', 'mail.', 'smtp.']):
 | 
						|
                classification = "Service Endpoint"
 | 
						|
            elif domain['id'].count('.') > 1:
 | 
						|
                classification = "Subdomain"
 | 
						|
            
 | 
						|
            # Certificate status
 | 
						|
            cert_status = self._determine_certificate_status(domain)
 | 
						|
            
 | 
						|
            # Security notes
 | 
						|
            security_notes = []
 | 
						|
            if cert_status == "Expired/Invalid":
 | 
						|
                security_notes.append("Certificate validation issues")
 | 
						|
            if len(connected_ips) == 0:
 | 
						|
                security_notes.append("No IP resolution found")
 | 
						|
            if len(connected_ips) > 5:
 | 
						|
                security_notes.append("Multiple IP endpoints")
 | 
						|
            
 | 
						|
            domain_edges = [e for e in edges if e['from'] == domain['id']]
 | 
						|
            
 | 
						|
            domain_analysis.append({
 | 
						|
                'domain': domain['id'],
 | 
						|
                'classification': classification,
 | 
						|
                'ips': connected_ips,
 | 
						|
                'cert_status': cert_status,
 | 
						|
                'security_notes': security_notes,
 | 
						|
            })
 | 
						|
        
 | 
						|
        # Sort by number of connections (most connected first)
 | 
						|
        return sorted(domain_analysis, key=lambda x: len(x['ips']), reverse=True)
 | 
						|
    
 | 
						|
    def _get_detailed_ip_analysis(self, nodes: List[Dict], edges: List[Dict]) -> List[Dict[str, Any]]:
 | 
						|
        """Generate detailed analysis for each IP address."""
 | 
						|
        ip_nodes = [n for n in nodes if n['type'] == 'ip']
 | 
						|
        ip_analysis = []
 | 
						|
        
 | 
						|
        for ip in ip_nodes:
 | 
						|
            # Find connected domains
 | 
						|
            connected_domains = [e['from'] for e in edges 
 | 
						|
                               if e['to'] == ip['id'] and _is_valid_domain(e['from'])]
 | 
						|
            
 | 
						|
            # Extract metadata from attributes
 | 
						|
            ip_version = "IPv4"
 | 
						|
            location = None
 | 
						|
            isp = None
 | 
						|
            open_ports = []
 | 
						|
            
 | 
						|
            for attr in ip.get('attributes', []):
 | 
						|
                if attr.get('name') == 'country':
 | 
						|
                    location = attr.get('value')
 | 
						|
                elif attr.get('name') == 'org':
 | 
						|
                    isp = attr.get('value')
 | 
						|
                elif attr.get('name') == 'shodan_open_port':
 | 
						|
                    open_ports.append(attr.get('value'))
 | 
						|
                elif 'ipv6' in str(attr.get('metadata', {})).lower():
 | 
						|
                    ip_version = "IPv6"
 | 
						|
            
 | 
						|
            # Find ISP from relationships
 | 
						|
            if not isp:
 | 
						|
                isp_edges = [e for e in edges if e['from'] == ip['id'] and e['label'].endswith('_isp')]
 | 
						|
                isp = isp_edges[0]['to'] if isp_edges else None
 | 
						|
            
 | 
						|
            ip_analysis.append({
 | 
						|
                'ip': ip['id'],
 | 
						|
                'version': ip_version,
 | 
						|
                'domains': connected_domains,
 | 
						|
                'isp': isp,
 | 
						|
                'location': location,
 | 
						|
                'open_ports': open_ports
 | 
						|
            })
 | 
						|
        
 | 
						|
        # Sort by number of connected domains
 | 
						|
        return sorted(ip_analysis, key=lambda x: len(x['domains']), reverse=True)
 | 
						|
    
 | 
						|
    def _analyze_network_topology(self, nodes: List[Dict], edges: List[Dict]) -> Dict[str, Any]:
 | 
						|
        """Analyze network topology and identify key structural patterns."""
 | 
						|
        if not nodes or not edges:
 | 
						|
            return {'hubs': [], 'clusters': [], 'density': 0, 'avg_path_length': 0}
 | 
						|
        
 | 
						|
        # Create NetworkX graph
 | 
						|
        G = nx.DiGraph()
 | 
						|
        for node in nodes:
 | 
						|
            G.add_node(node['id'])
 | 
						|
        for edge in edges:
 | 
						|
            G.add_edge(edge['from'], edge['to'])
 | 
						|
        
 | 
						|
        # Convert to undirected for certain analyses
 | 
						|
        G_undirected = G.to_undirected()
 | 
						|
        
 | 
						|
        # Identify hubs (nodes with high degree centrality)
 | 
						|
        centrality = nx.degree_centrality(G_undirected)
 | 
						|
        hub_threshold = max(centrality.values()) * 0.7 if centrality else 0
 | 
						|
        hubs = [node for node, cent in centrality.items() if cent >= hub_threshold]
 | 
						|
        
 | 
						|
        # Find connected components (clusters)
 | 
						|
        clusters = list(nx.connected_components(G_undirected))
 | 
						|
        
 | 
						|
        # Calculate density
 | 
						|
        density = nx.density(G_undirected)
 | 
						|
        
 | 
						|
        # Calculate average path length (for largest component)
 | 
						|
        if G_undirected.number_of_nodes() > 1:
 | 
						|
            largest_cc = max(nx.connected_components(G_undirected), key=len)
 | 
						|
            subgraph = G_undirected.subgraph(largest_cc)
 | 
						|
            try:
 | 
						|
                avg_path_length = nx.average_shortest_path_length(subgraph)
 | 
						|
            except:
 | 
						|
                avg_path_length = 0
 | 
						|
        else:
 | 
						|
            avg_path_length = 0
 | 
						|
        
 | 
						|
        return {
 | 
						|
            'hubs': hubs,
 | 
						|
            'clusters': clusters,
 | 
						|
            'density': density,
 | 
						|
            'avg_path_length': avg_path_length
 | 
						|
        }
 | 
						|
    
 | 
						|
    def _identify_key_relationships(self, edges: List[Dict]) -> List[Dict[str, Any]]:
 | 
						|
        """Identify the most significant relationships in the infrastructure."""
 | 
						|
        # Score relationships by type importance
 | 
						|
        relationship_importance = {
 | 
						|
            'dns_a_record': 0.9,
 | 
						|
            'dns_aaaa_record': 0.9,
 | 
						|
            'crtsh_cert_issuer': 0.8,
 | 
						|
            'shodan_isp': 0.8,
 | 
						|
            'crtsh_san_certificate': 0.7,
 | 
						|
            'dns_mx_record': 0.7,
 | 
						|
            'dns_ns_record': 0.7
 | 
						|
        }
 | 
						|
        
 | 
						|
        scored_edges = []
 | 
						|
        for edge in edges:
 | 
						|
            type_weight = relationship_importance.get(edge.get('label', ''), 0.5)
 | 
						|
            
 | 
						|
            scored_edges.append({
 | 
						|
                'source': edge['from'],
 | 
						|
                'target': edge['to'],
 | 
						|
                'type': edge.get('label', ''),
 | 
						|
                'provider': edge.get('source_provider', ''),
 | 
						|
                'score': combined_score
 | 
						|
            })
 | 
						|
        
 | 
						|
        # Return top relationships by score
 | 
						|
        return sorted(scored_edges, key=lambda x: x['score'], reverse=True)
 | 
						|
    
 | 
						|
    def _analyze_certificate_infrastructure(self, nodes: List[Dict]) -> Dict[str, Any]:
 | 
						|
        """Analyze certificate infrastructure across all domains."""
 | 
						|
        domain_nodes = [n for n in nodes if n['type'] == 'domain']
 | 
						|
        ca_nodes = [n for n in nodes if n['type'] == 'ca']
 | 
						|
        
 | 
						|
        valid_certs = 0
 | 
						|
        expired_certs = 0
 | 
						|
        total_certs = 0
 | 
						|
        cas = Counter()
 | 
						|
        
 | 
						|
        for domain in domain_nodes:
 | 
						|
            for attr in domain.get('attributes', []):
 | 
						|
                if attr.get('name') == 'cert_is_currently_valid':
 | 
						|
                    total_certs += 1
 | 
						|
                    if attr.get('value') is True:
 | 
						|
                        valid_certs += 1
 | 
						|
                    else:
 | 
						|
                        expired_certs += 1
 | 
						|
                elif attr.get('name') == 'cert_issuer_name':
 | 
						|
                    issuer = attr.get('value')
 | 
						|
                    if issuer:
 | 
						|
                        cas[issuer] += 1
 | 
						|
        
 | 
						|
        return {
 | 
						|
            'total_certs': total_certs,
 | 
						|
            'valid': valid_certs,
 | 
						|
            'expired': expired_certs,
 | 
						|
            'cas': cas
 | 
						|
        }
 | 
						|
    
 | 
						|
    def _has_expired_certificates(self, domain_node: Dict) -> bool:
 | 
						|
        """Check if domain has expired certificates."""
 | 
						|
        for attr in domain_node.get('attributes', []):
 | 
						|
            if (attr.get('name') == 'cert_is_currently_valid' and 
 | 
						|
                attr.get('value') is False):
 | 
						|
                return True
 | 
						|
        return False
 | 
						|
    
 | 
						|
    def _determine_certificate_status(self, domain_node: Dict) -> str:
 | 
						|
        """Determine the certificate status for a domain."""
 | 
						|
        has_valid = False
 | 
						|
        has_expired = False
 | 
						|
        has_any = False
 | 
						|
        
 | 
						|
        for attr in domain_node.get('attributes', []):
 | 
						|
            if attr.get('name') == 'cert_is_currently_valid':
 | 
						|
                has_any = True
 | 
						|
                if attr.get('value') is True:
 | 
						|
                    has_valid = True
 | 
						|
                else:
 | 
						|
                    has_expired = True
 | 
						|
        
 | 
						|
        if not has_any:
 | 
						|
            return "No Certificate Data"
 | 
						|
        elif has_valid and not has_expired:
 | 
						|
            return "Valid"
 | 
						|
        elif has_expired and not has_valid:
 | 
						|
            return "Expired/Invalid"
 | 
						|
        else:
 | 
						|
            return "Mixed Status"
 | 
						|
    
 | 
						|
    def _humanize_relationship_type(self, rel_type: str) -> str:
 | 
						|
        """Convert technical relationship types to human-readable descriptions."""
 | 
						|
        type_map = {
 | 
						|
            'dns_a_record': 'DNS A Record Resolution',
 | 
						|
            'dns_aaaa_record': 'DNS AAAA Record (IPv6) Resolution',
 | 
						|
            'dns_mx_record': 'Email Server (MX) Configuration',
 | 
						|
            'dns_ns_record': 'Name Server Delegation',
 | 
						|
            'dns_cname_record': 'DNS Alias (CNAME) Resolution',
 | 
						|
            'crtsh_cert_issuer': 'SSL Certificate Issuer Relationship',
 | 
						|
            'crtsh_san_certificate': 'Shared SSL Certificate',
 | 
						|
            'shodan_isp': 'Internet Service Provider Assignment',
 | 
						|
            'shodan_a_record': 'IP-to-Domain Resolution (Shodan)',
 | 
						|
            'dns_ptr_record': 'Reverse DNS Resolution'
 | 
						|
        }
 | 
						|
        return type_map.get(rel_type, rel_type.replace('_', ' ').title())
 | 
						|
    
 | 
						|
    def _count_cross_validated_relationships(self, edges: List[Dict]) -> int:
 | 
						|
        """Count relationships verified by multiple providers."""
 | 
						|
        # Group edges by source-target pair
 | 
						|
        edge_pairs = defaultdict(list)
 | 
						|
        for edge in edges:
 | 
						|
            pair_key = f"{edge['from']}->{edge['to']}"
 | 
						|
            edge_pairs[pair_key].append(edge.get('source_provider', ''))
 | 
						|
        
 | 
						|
        # Count pairs with multiple providers
 | 
						|
        cross_validated = 0
 | 
						|
        for pair, providers in edge_pairs.items():
 | 
						|
            if len(set(providers)) > 1:  # Multiple unique providers
 | 
						|
                cross_validated += 1
 | 
						|
        
 | 
						|
        return cross_validated
 | 
						|
    
 | 
						|
    def _generate_security_recommendations(self, infrastructure_analysis: Dict) -> List[str]:
 | 
						|
        """Generate actionable security recommendations."""
 | 
						|
        recommendations = []
 | 
						|
        
 | 
						|
        # Check for complex infrastructure
 | 
						|
        if infrastructure_analysis['ips'] > 10:
 | 
						|
            recommendations.append(
 | 
						|
                "Document and validate the necessity of extensive IP address infrastructure"
 | 
						|
            )
 | 
						|
        
 | 
						|
        if infrastructure_analysis['correlations'] > 5:
 | 
						|
            recommendations.append(
 | 
						|
                "Investigate shared infrastructure components for operational security implications"
 | 
						|
            )
 | 
						|
        
 | 
						|
        if not recommendations:
 | 
						|
            recommendations.append(
 | 
						|
                "Continue monitoring for changes in the identified digital infrastructure"
 | 
						|
            )
 | 
						|
        
 | 
						|
        return recommendations
 | 
						|
    
 | 
						|
    def _generate_conclusion(self, target: str, infrastructure_analysis: Dict, total_relationships: int) -> str:
 | 
						|
        """Generate a professional conclusion for the report."""
 | 
						|
        conclusion_parts = [
 | 
						|
            f"The passive reconnaissance analysis of '{target}' has successfully mapped "
 | 
						|
            f"a digital infrastructure ecosystem consisting of {infrastructure_analysis['domains']} "
 | 
						|
            f"domain names, {infrastructure_analysis['ips']} IP addresses, and "
 | 
						|
            f"{total_relationships} verified inter-entity relationships."
 | 
						|
        ]
 | 
						|
        
 | 
						|
        conclusion_parts.append(
 | 
						|
            "All findings in this report are based on publicly available information and "
 | 
						|
            "passive reconnaissance techniques. The analysis maintains full forensic integrity "
 | 
						|
            "with complete audit trails for all data collection activities."
 | 
						|
        )
 | 
						|
        
 | 
						|
        return " ".join(conclusion_parts)
 | 
						|
    
 | 
						|
    def _count_bidirectional_relationships(self, graph) -> int:
 | 
						|
        """Count bidirectional relationships in the graph."""
 | 
						|
        count = 0
 | 
						|
        for u, v in graph.edges():
 | 
						|
            if graph.has_edge(v, u):
 | 
						|
                count += 1
 | 
						|
        return count // 2  # Each pair counted twice
 | 
						|
    
 | 
						|
    def _identify_hub_nodes(self, graph, nodes: List[Dict]) -> List[str]:
 | 
						|
        """Identify nodes that serve as major hubs in the network."""
 | 
						|
        if not graph.nodes():
 | 
						|
            return []
 | 
						|
        
 | 
						|
        degree_centrality = nx.degree_centrality(graph.to_undirected())
 | 
						|
        threshold = max(degree_centrality.values()) * 0.8 if degree_centrality else 0
 | 
						|
        
 | 
						|
        return [node for node, centrality in degree_centrality.items() 
 | 
						|
                if centrality >= threshold]
 | 
						|
    
 | 
						|
    def _get_version(self) -> str:
 | 
						|
        """Get DNScope version for report authentication."""
 | 
						|
        return "1.0.0-forensic"
 | 
						|
    
 | 
						|
    def export_graph_json(self, graph_manager) -> Dict[str, Any]:
 | 
						|
        """
 | 
						|
        Export complete graph data as a JSON-serializable dictionary.
 | 
						|
        Moved from GraphManager to centralize export functionality.
 | 
						|
        
 | 
						|
        Args:
 | 
						|
            graph_manager: GraphManager instance with graph data
 | 
						|
            
 | 
						|
        Returns:
 | 
						|
            Complete graph data with export metadata
 | 
						|
        """
 | 
						|
        graph_data = nx.node_link_data(graph_manager.graph, edges="edges")
 | 
						|
        
 | 
						|
        return {
 | 
						|
            'export_metadata': {
 | 
						|
                'export_timestamp': datetime.now(timezone.utc).isoformat(),
 | 
						|
                'graph_creation_time': graph_manager.creation_time,
 | 
						|
                'last_modified': graph_manager.last_modified,
 | 
						|
                'total_nodes': graph_manager.get_node_count(),
 | 
						|
                'total_edges': graph_manager.get_edge_count(),
 | 
						|
                'graph_format': 'DNScope_v1_unified_model'
 | 
						|
            },
 | 
						|
            'graph': graph_data,
 | 
						|
            'statistics': graph_manager.get_statistics()
 | 
						|
        }
 | 
						|
    
 | 
						|
    def serialize_to_json(self, data: Dict[str, Any], indent: int = 2) -> str:
 | 
						|
        """
 | 
						|
        Serialize data to JSON with custom handling for non-serializable objects.
 | 
						|
        
 | 
						|
        Args:
 | 
						|
            data: Data to serialize
 | 
						|
            indent: JSON indentation level
 | 
						|
            
 | 
						|
        Returns:
 | 
						|
            JSON string representation
 | 
						|
        """
 | 
						|
        try:
 | 
						|
            return json.dumps(data, indent=indent, cls=CustomJSONEncoder, ensure_ascii=False)
 | 
						|
        except Exception:
 | 
						|
            # Fallback to aggressive cleaning
 | 
						|
            cleaned_data = self._clean_for_json(data)
 | 
						|
            return json.dumps(cleaned_data, indent=indent, ensure_ascii=False)
 | 
						|
    
 | 
						|
    def _clean_for_json(self, obj, max_depth: int = 10, current_depth: int = 0) -> Any:
 | 
						|
        """
 | 
						|
        Recursively clean an object to make it JSON serializable.
 | 
						|
        Handles circular references and problematic object types.
 | 
						|
        
 | 
						|
        Args:
 | 
						|
            obj: Object to clean
 | 
						|
            max_depth: Maximum recursion depth
 | 
						|
            current_depth: Current recursion depth
 | 
						|
            
 | 
						|
        Returns:
 | 
						|
            JSON-serializable object
 | 
						|
        """
 | 
						|
        if current_depth > max_depth:
 | 
						|
            return f"<max_depth_exceeded_{type(obj).__name__}>"
 | 
						|
        
 | 
						|
        if obj is None or isinstance(obj, (bool, int, float, str)):
 | 
						|
            return obj
 | 
						|
        elif isinstance(obj, datetime):
 | 
						|
            return obj.isoformat()
 | 
						|
        elif isinstance(obj, (set, frozenset)):
 | 
						|
            return list(obj)
 | 
						|
        elif isinstance(obj, dict):
 | 
						|
            cleaned = {}
 | 
						|
            for key, value in obj.items():
 | 
						|
                try:
 | 
						|
                    # Ensure key is string
 | 
						|
                    clean_key = str(key) if not isinstance(key, str) else key
 | 
						|
                    cleaned[clean_key] = self._clean_for_json(value, max_depth, current_depth + 1)
 | 
						|
                except Exception:
 | 
						|
                    cleaned[str(key)] = f"<serialization_error_{type(value).__name__}>"
 | 
						|
            return cleaned
 | 
						|
        elif isinstance(obj, (list, tuple)):
 | 
						|
            cleaned = []
 | 
						|
            for item in obj:
 | 
						|
                try:
 | 
						|
                    cleaned.append(self._clean_for_json(item, max_depth, current_depth + 1))
 | 
						|
                except Exception:
 | 
						|
                    cleaned.append(f"<serialization_error_{type(item).__name__}>")
 | 
						|
            return cleaned
 | 
						|
        elif hasattr(obj, '__dict__'):
 | 
						|
            try:
 | 
						|
                return self._clean_for_json(obj.__dict__, max_depth, current_depth + 1)
 | 
						|
            except Exception:
 | 
						|
                return str(obj)
 | 
						|
        elif hasattr(obj, 'value'):
 | 
						|
            # For enum-like objects
 | 
						|
            return obj.value
 | 
						|
        else:
 | 
						|
            return str(obj)
 | 
						|
    
 | 
						|
    def generate_filename(self, target: str, export_type: str, timestamp: Optional[datetime] = None) -> str:
 | 
						|
        """
 | 
						|
        Generate standardized filename for exports.
 | 
						|
        
 | 
						|
        Args:
 | 
						|
            target: Target domain/IP being scanned
 | 
						|
            export_type: Type of export (json, txt, summary)
 | 
						|
            timestamp: Optional timestamp (defaults to now)
 | 
						|
            
 | 
						|
        Returns:
 | 
						|
            Formatted filename with forensic naming convention
 | 
						|
        """
 | 
						|
        if timestamp is None:
 | 
						|
            timestamp = datetime.now(timezone.utc)
 | 
						|
        
 | 
						|
        timestamp_str = timestamp.strftime('%Y%m%d_%H%M%S')
 | 
						|
        safe_target = "".join(c for c in target if c.isalnum() or c in ('-', '_', '.')).rstrip()
 | 
						|
        
 | 
						|
        extension_map = {
 | 
						|
            'json': 'json',
 | 
						|
            'txt': 'txt', 
 | 
						|
            'summary': 'txt',
 | 
						|
            'targets': 'txt'
 | 
						|
        }
 | 
						|
        
 | 
						|
        extension = extension_map.get(export_type, 'txt')
 | 
						|
        return f"DNScope_{export_type}_{safe_target}_{timestamp_str}.{extension}"
 | 
						|
 | 
						|
 | 
						|
class CustomJSONEncoder(json.JSONEncoder):
 | 
						|
    """Custom JSON encoder to handle non-serializable objects."""
 | 
						|
    
 | 
						|
    def default(self, obj):
 | 
						|
        if isinstance(obj, datetime):
 | 
						|
            return obj.isoformat()
 | 
						|
        elif isinstance(obj, set):
 | 
						|
            return list(obj)
 | 
						|
        elif isinstance(obj, Decimal):
 | 
						|
            return float(obj)
 | 
						|
        elif hasattr(obj, '__dict__'):
 | 
						|
            # For custom objects, try to serialize their dict representation
 | 
						|
            try:
 | 
						|
                return obj.__dict__
 | 
						|
            except:
 | 
						|
                return str(obj)
 | 
						|
        elif hasattr(obj, 'value') and hasattr(obj, 'name'):
 | 
						|
            # For enum objects
 | 
						|
            return obj.value
 | 
						|
        else:
 | 
						|
            # For any other non-serializable object, convert to string
 | 
						|
            return str(obj)
 | 
						|
 | 
						|
 | 
						|
# Global export manager instance
 | 
						|
export_manager = ExportManager() |