mirror of
https://github.com/overcuriousity/autopsy-flatpak.git
synced 2025-07-06 21:00:22 +00:00
385 lines
12 KiB
Python
385 lines
12 KiB
Python
# -*- coding: utf-8 -*-
|
|
|
|
# Copyright 2011 Tomo Krajina
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import pdb
|
|
|
|
import logging as mod_logging
|
|
import math as mod_math
|
|
|
|
from . import utils as mod_utils
|
|
|
|
# Generic geo related function and class(es)
|
|
|
|
# One degree in meters:
|
|
ONE_DEGREE = 1000. * 10000.8 / 90.
|
|
|
|
EARTH_RADIUS = 6371 * 1000
|
|
|
|
|
|
def to_rad(x):
|
|
return x / 180. * mod_math.pi
|
|
|
|
|
|
def haversine_distance(latitude_1, longitude_1, latitude_2, longitude_2):
|
|
"""
|
|
Haversine distance between two points, expressed in meters.
|
|
|
|
Implemented from http://www.movable-type.co.uk/scripts/latlong.html
|
|
"""
|
|
d_lat = to_rad(latitude_1 - latitude_2)
|
|
d_lon = to_rad(longitude_1 - longitude_2)
|
|
lat1 = to_rad(latitude_1)
|
|
lat2 = to_rad(latitude_2)
|
|
|
|
a = mod_math.sin(d_lat/2) * mod_math.sin(d_lat/2) + \
|
|
mod_math.sin(d_lon/2) * mod_math.sin(d_lon/2) * mod_math.cos(lat1) * mod_math.cos(lat2)
|
|
c = 2 * mod_math.atan2(mod_math.sqrt(a), mod_math.sqrt(1-a))
|
|
d = EARTH_RADIUS * c
|
|
|
|
return d
|
|
|
|
|
|
def length(locations=None, _3d=None):
|
|
locations = locations or []
|
|
if not locations:
|
|
return 0
|
|
length = 0
|
|
for i in range(len(locations)):
|
|
if i > 0:
|
|
previous_location = locations[i - 1]
|
|
location = locations[i]
|
|
|
|
if _3d:
|
|
d = location.distance_3d(previous_location)
|
|
else:
|
|
d = location.distance_2d(previous_location)
|
|
if d != 0 and not d:
|
|
pass
|
|
else:
|
|
length += d
|
|
return length
|
|
|
|
|
|
def length_2d(locations=None):
|
|
""" 2-dimensional length (meters) of locations (only latitude and longitude, no elevation). """
|
|
locations = locations or []
|
|
return length(locations, False)
|
|
|
|
|
|
def length_3d(locations=None):
|
|
""" 3-dimensional length (meters) of locations (it uses latitude, longitude, and elevation). """
|
|
locations = locations or []
|
|
return length(locations, True)
|
|
|
|
|
|
def calculate_max_speed(speeds_and_distances):
|
|
"""
|
|
Compute average distance and standard deviation for distance. Extremes
|
|
in distances are usually extremes in speeds, so we will ignore them,
|
|
here.
|
|
|
|
speeds_and_distances must be a list containing pairs of (speed, distance)
|
|
for every point in a track segment.
|
|
"""
|
|
assert speeds_and_distances
|
|
if len(speeds_and_distances) > 0:
|
|
assert len(speeds_and_distances[0]) == 2
|
|
# ...
|
|
assert len(speeds_and_distances[-1]) == 2
|
|
|
|
size = float(len(speeds_and_distances))
|
|
|
|
if size < 20:
|
|
mod_logging.debug('Segment too small to compute speed, size=%s', size)
|
|
return None
|
|
|
|
distances = list(map(lambda x: x[1], speeds_and_distances))
|
|
average_distance = sum(distances) / float(size)
|
|
standard_distance_deviation = mod_math.sqrt(sum(map(lambda distance: (distance-average_distance)**2, distances))/size)
|
|
|
|
# Ignore items where the distance is too big:
|
|
filtered_speeds_and_distances = filter(lambda speed_and_distance: abs(speed_and_distance[1] - average_distance) <= standard_distance_deviation * 1.5, speeds_and_distances)
|
|
|
|
# sort by speed:
|
|
speeds = list(map(lambda speed_and_distance: speed_and_distance[0], filtered_speeds_and_distances))
|
|
if not isinstance(speeds, list): # python3
|
|
speeds = list(speeds)
|
|
if not speeds:
|
|
return None
|
|
speeds.sort()
|
|
|
|
# Even here there may be some extremes => ignore the last 5%:
|
|
index = int(len(speeds) * 0.95)
|
|
if index >= len(speeds):
|
|
index = -1
|
|
|
|
return speeds[index]
|
|
|
|
|
|
def calculate_uphill_downhill(elevations):
|
|
if not elevations:
|
|
return 0, 0
|
|
|
|
size = len(elevations)
|
|
|
|
def __filter(n):
|
|
current_ele = elevations[n]
|
|
if current_ele is None:
|
|
return False
|
|
if 0 < n < size - 1:
|
|
previous_ele = elevations[n-1]
|
|
next_ele = elevations[n+1]
|
|
if previous_ele is not None and current_ele is not None and next_ele is not None:
|
|
return previous_ele*.3 + current_ele*.4 + next_ele*.3
|
|
return current_ele
|
|
|
|
smoothed_elevations = list(map(__filter, range(size)))
|
|
|
|
uphill, downhill = 0., 0.
|
|
|
|
for n, elevation in enumerate(smoothed_elevations):
|
|
if n > 0 and elevation is not None and smoothed_elevations is not None:
|
|
d = elevation - smoothed_elevations[n-1]
|
|
if d > 0:
|
|
uphill += d
|
|
else:
|
|
downhill -= d
|
|
|
|
return uphill, downhill
|
|
|
|
|
|
def distance(latitude_1, longitude_1, elevation_1, latitude_2, longitude_2, elevation_2,
|
|
haversine=None):
|
|
"""
|
|
Distance between two points. If elevation is None compute a 2d distance
|
|
|
|
if haversine==True -- haversine will be used for every computations,
|
|
otherwise...
|
|
|
|
Haversine distance will be used for distant points where elevation makes a
|
|
small difference, so it is ignored. That's because haversine is 5-6 times
|
|
slower than the dummy distance algorithm (which is OK for most GPS tracks).
|
|
"""
|
|
|
|
# If points too distant -- compute haversine distance:
|
|
if haversine or (abs(latitude_1 - latitude_2) > .2 or abs(longitude_1 - longitude_2) > .2):
|
|
return haversine_distance(latitude_1, longitude_1, latitude_2, longitude_2)
|
|
|
|
coef = mod_math.cos(latitude_1 / 180. * mod_math.pi)
|
|
x = latitude_1 - latitude_2
|
|
y = (longitude_1 - longitude_2) * coef
|
|
|
|
distance_2d = mod_math.sqrt(x * x + y * y) * ONE_DEGREE
|
|
|
|
if elevation_1 is None or elevation_2 is None or elevation_1 == elevation_2:
|
|
return distance_2d
|
|
|
|
return mod_math.sqrt(distance_2d ** 2 + (elevation_1 - elevation_2) ** 2)
|
|
|
|
|
|
def elevation_angle(location1, location2, radians=False):
|
|
""" Uphill/downhill angle between two locations. """
|
|
if location1.elevation is None or location2.elevation is None:
|
|
return None
|
|
|
|
b = float(location2.elevation - location1.elevation)
|
|
a = location2.distance_2d(location1)
|
|
|
|
if a == 0:
|
|
return 0
|
|
|
|
angle = mod_math.atan(b / a)
|
|
|
|
if radians:
|
|
return angle
|
|
|
|
return 180 * angle / mod_math.pi
|
|
|
|
|
|
def distance_from_line(point, line_point_1, line_point_2):
|
|
""" Distance of point from a line given with two points. """
|
|
assert point, point
|
|
assert line_point_1, line_point_1
|
|
assert line_point_2, line_point_2
|
|
|
|
a = line_point_1.distance_2d(line_point_2)
|
|
|
|
if a == 0:
|
|
return line_point_1.distance_2d(point)
|
|
|
|
b = line_point_1.distance_2d(point)
|
|
c = line_point_2.distance_2d(point)
|
|
|
|
s = (a + b + c) / 2.
|
|
|
|
return 2. * mod_math.sqrt(abs(s * (s - a) * (s - b) * (s - c))) / a
|
|
|
|
|
|
def get_line_equation_coefficients(location1, location2):
|
|
"""
|
|
Get line equation coefficients for:
|
|
latitude * a + longitude * b + c = 0
|
|
|
|
This is a normal cartesian line (not spherical!)
|
|
"""
|
|
if location1.longitude == location2.longitude:
|
|
# Vertical line:
|
|
return float(0), float(1), float(-location1.longitude)
|
|
else:
|
|
a = float(location1.latitude - location2.latitude) / (location1.longitude - location2.longitude)
|
|
b = location1.latitude - location1.longitude * a
|
|
return float(1), float(-a), float(-b)
|
|
|
|
|
|
def simplify_polyline(points, max_distance):
|
|
"""Does Ramer-Douglas-Peucker algorithm for simplification of polyline """
|
|
|
|
if len(points) < 3:
|
|
return points
|
|
|
|
begin, end = points[0], points[-1]
|
|
|
|
# Use a "normal" line just to detect the most distant point (not its real distance)
|
|
# this is because this is faster to compute than calling distance_from_line() for
|
|
# every point.
|
|
#
|
|
# This is an approximation and may have some errors near the poles and if
|
|
# the points are too distant, but it should be good enough for most use
|
|
# cases...
|
|
a, b, c = get_line_equation_coefficients(begin, end)
|
|
|
|
tmp_max_distance = -1000000
|
|
tmp_max_distance_position = None
|
|
for point_no in range(len(points[1:-1])):
|
|
point = points[point_no]
|
|
d = abs(a * point.latitude + b * point.longitude + c)
|
|
if d > tmp_max_distance:
|
|
tmp_max_distance = d
|
|
tmp_max_distance_position = point_no
|
|
|
|
# Now that we have the most distance point, compute its real distance:
|
|
real_max_distance = distance_from_line(points[tmp_max_distance_position], begin, end)
|
|
|
|
if real_max_distance < max_distance:
|
|
return [begin, end]
|
|
|
|
return (simplify_polyline(points[:tmp_max_distance_position + 2], max_distance) +
|
|
simplify_polyline(points[tmp_max_distance_position + 1:], max_distance)[1:])
|
|
|
|
|
|
class Location:
|
|
""" Generic geographical location """
|
|
|
|
latitude = None
|
|
longitude = None
|
|
elevation = None
|
|
|
|
def __init__(self, latitude, longitude, elevation=None):
|
|
self.latitude = latitude
|
|
self.longitude = longitude
|
|
self.elevation = elevation
|
|
|
|
def has_elevation(self):
|
|
return self.elevation or self.elevation == 0
|
|
|
|
def remove_elevation(self):
|
|
self.elevation = None
|
|
|
|
def distance_2d(self, location):
|
|
if not location:
|
|
return None
|
|
|
|
return distance(self.latitude, self.longitude, None, location.latitude, location.longitude, None)
|
|
|
|
def distance_3d(self, location):
|
|
if not location:
|
|
return None
|
|
|
|
return distance(self.latitude, self.longitude, self.elevation, location.latitude, location.longitude, location.elevation)
|
|
|
|
def elevation_angle(self, location, radians=False):
|
|
return elevation_angle(self, location, radians)
|
|
|
|
def move(self, location_delta):
|
|
self.latitude, self.longitude = location_delta.move(self)
|
|
|
|
def __add__(self, location_delta):
|
|
latitude, longitude = location_delta.move(self)
|
|
return Location(latitude, longitude)
|
|
|
|
def __str__(self):
|
|
return '[loc:%s,%s@%s]' % (self.latitude, self.longitude, self.elevation)
|
|
|
|
def __repr__(self):
|
|
if self.elevation is None:
|
|
return 'Location(%s, %s)' % (self.latitude, self.longitude)
|
|
else:
|
|
return 'Location(%s, %s, %s)' % (self.latitude, self.longitude, self.elevation)
|
|
|
|
def __hash__(self):
|
|
return mod_utils.hash_object(self, ('latitude', 'longitude', 'elevation'))
|
|
|
|
|
|
class LocationDelta:
|
|
"""
|
|
Intended to use similar to timestamp.timedelta, but for Locations.
|
|
"""
|
|
|
|
NORTH = 0
|
|
EAST = 90
|
|
SOUTH = 180
|
|
WEST = 270
|
|
|
|
def __init__(self, distance=None, angle=None, latitude_diff=None, longitude_diff=None):
|
|
"""
|
|
Version 1:
|
|
Distance (in meters).
|
|
angle_from_north *clockwise*.
|
|
...must be given
|
|
Version 2:
|
|
latitude_diff and longitude_diff
|
|
...must be given
|
|
"""
|
|
if (distance is not None) and (angle is not None):
|
|
if (latitude_diff is not None) or (longitude_diff is not None):
|
|
raise Exception('No lat/lon diff if using distance and angle!')
|
|
self.distance = distance
|
|
self.angle_from_north = angle
|
|
self.move_function = self.move_by_angle_and_distance
|
|
elif (latitude_diff is not None) and (longitude_diff is not None):
|
|
if (distance is not None) or (angle is not None):
|
|
raise Exception('No distance/angle if using lat/lon diff!')
|
|
this.latitude_diff = latitude_diff
|
|
this.longitude_diff = longitude_diff
|
|
self.move_function = self.move_by_lat_lon_diff
|
|
|
|
def move(self, location):
|
|
"""
|
|
Move location by this timedelta.
|
|
"""
|
|
return self.move_function(location)
|
|
|
|
def move_by_angle_and_distance(self, location):
|
|
coef = mod_math.cos(location.latitude / 180. * mod_math.pi)
|
|
vertical_distance_diff = mod_math.sin((90 - self.angle_from_north) / 180. * mod_math.pi) / ONE_DEGREE
|
|
horizontal_distance_diff = mod_math.cos((90 - self.angle_from_north) / 180. * mod_math.pi) / ONE_DEGREE
|
|
lat_diff = self.distance * vertical_distance_diff
|
|
lon_diff = self.distance * horizontal_distance_diff / coef
|
|
return location.latitude + lat_diff, location.longitude + lon_diff
|
|
|
|
def move_by_lat_lon_diff(self, location):
|
|
return location.latitude + self.latitude_diff, location.longitude + self.longitude_diff
|