# -*- coding: utf-8 -*- # Copyright 2011 Tomo Krajina # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ GPX related stuff """ import pdb import logging as mod_logging import math as mod_math import collections as mod_collections import copy as mod_copy import datetime as mod_datetime from . import utils as mod_utils from . import geo as mod_geo from . import gpxfield as mod_gpxfield # GPX date format to be used when writing the GPX output: DATE_FORMAT = '%Y-%m-%dT%H:%M:%SZ' # GPX date format(s) used for parsing. The T between date and time and Z after # time are allowed, too: DATE_FORMATS = [ '%Y-%m-%d %H:%M:%S', '%Y-%m-%d %H:%M:%S.%f', #'%Y-%m-%d %H:%M:%S%z', #'%Y-%m-%d %H:%M:%S.%f%z', ] # Used in smoothing, sum must be 1: SMOOTHING_RATIO = (0.4, 0.2, 0.4) # When computing stopped time -- this is the minimum speed between two points, # if speed is less than this value -- we'll assume it is zero DEFAULT_STOPPED_SPEED_THRESHOLD = 1 # Fields used for all point elements (route point, track point, waypoint): GPX_10_POINT_FIELDS = [ mod_gpxfield.GPXField('latitude', attribute='lat', type=mod_gpxfield.FLOAT_TYPE, mandatory=True), mod_gpxfield.GPXField('longitude', attribute='lon', type=mod_gpxfield.FLOAT_TYPE, mandatory=True), mod_gpxfield.GPXField('elevation', 'ele', type=mod_gpxfield.FLOAT_TYPE), mod_gpxfield.GPXField('time', type=mod_gpxfield.TIME_TYPE), mod_gpxfield.GPXField('magnetic_variation', 'magvar', type=mod_gpxfield.FLOAT_TYPE), mod_gpxfield.GPXField('geoid_height', 'geoidheight', type=mod_gpxfield.FLOAT_TYPE), mod_gpxfield.GPXField('name'), mod_gpxfield.GPXField('comment', 'cmt'), mod_gpxfield.GPXField('description', 'desc'), mod_gpxfield.GPXField('source', 'src'), mod_gpxfield.GPXField('link', 'url'), mod_gpxfield.GPXField('link_text', 'urlname'), mod_gpxfield.GPXField('symbol', 'sym'), mod_gpxfield.GPXField('type'), mod_gpxfield.GPXField('type_of_gpx_fix', 'fix', possible=('none', '2d', '3d', 'dgps', 'pps',)), mod_gpxfield.GPXField('satellites', 'sat', type=mod_gpxfield.INT_TYPE), mod_gpxfield.GPXField('horizontal_dilution', 'hdop', type=mod_gpxfield.FLOAT_TYPE), mod_gpxfield.GPXField('vertical_dilution', 'vdop', type=mod_gpxfield.FLOAT_TYPE), mod_gpxfield.GPXField('position_dilution', 'pdop', type=mod_gpxfield.FLOAT_TYPE), mod_gpxfield.GPXField('age_of_dgps_data', 'ageofdgpsdata', type=mod_gpxfield.FLOAT_TYPE), mod_gpxfield.GPXField('dgps_id', 'dgpsid'), ] GPX_11_POINT_FIELDS = [ mod_gpxfield.GPXField('latitude', attribute='lat', type=mod_gpxfield.FLOAT_TYPE, mandatory=True), mod_gpxfield.GPXField('longitude', attribute='lon', type=mod_gpxfield.FLOAT_TYPE, mandatory=True), mod_gpxfield.GPXField('elevation', 'ele', type=mod_gpxfield.FLOAT_TYPE), mod_gpxfield.GPXField('time', type=mod_gpxfield.TIME_TYPE), mod_gpxfield.GPXField('magnetic_variation', 'magvar', type=mod_gpxfield.FLOAT_TYPE), mod_gpxfield.GPXField('geoid_height', 'geoidheight', type=mod_gpxfield.FLOAT_TYPE), mod_gpxfield.GPXField('name'), mod_gpxfield.GPXField('comment', 'cmt'), mod_gpxfield.GPXField('description', 'desc'), mod_gpxfield.GPXField('source', 'src'), 'link', mod_gpxfield.GPXField('link', attribute='href'), mod_gpxfield.GPXField('link_text', tag='text'), mod_gpxfield.GPXField('link_type', tag='type'), '/link', mod_gpxfield.GPXField('symbol', 'sym'), mod_gpxfield.GPXField('type'), mod_gpxfield.GPXField('type_of_gpx_fix', 'fix', possible=('none', '2d', '3d', 'dgps', 'pps',)), mod_gpxfield.GPXField('satellites', 'sat', type=mod_gpxfield.INT_TYPE), mod_gpxfield.GPXField('horizontal_dilution', 'hdop', type=mod_gpxfield.FLOAT_TYPE), mod_gpxfield.GPXField('vertical_dilution', 'vdop', type=mod_gpxfield.FLOAT_TYPE), mod_gpxfield.GPXField('position_dilution', 'pdop', type=mod_gpxfield.FLOAT_TYPE), mod_gpxfield.GPXField('age_of_dgps_data', 'ageofdgpsdata', type=mod_gpxfield.FLOAT_TYPE), mod_gpxfield.GPXField('dgps_id', 'dgpsid'), mod_gpxfield.GPXExtensionsField('extensions'), ] # GPX1.0 track points have two more fields after time # Note that this is not true for GPX1.1 GPX_TRACK_POINT_FIELDS = GPX_10_POINT_FIELDS[:4] \ + [ \ mod_gpxfield.GPXField('course', type=mod_gpxfield.FLOAT_TYPE), \ mod_gpxfield.GPXField('speed', type=mod_gpxfield.FLOAT_TYPE) \ ] \ + GPX_10_POINT_FIELDS[4:] # When possible, the result of various methods are named tuples defined here: TimeBounds = mod_collections.namedtuple( 'TimeBounds', ('start_time', 'end_time')) MovingData = mod_collections.namedtuple( 'MovingData', ('moving_time', 'stopped_time', 'moving_distance', 'stopped_distance', 'max_speed')) UphillDownhill = mod_collections.namedtuple( 'UphillDownhill', ('uphill', 'downhill')) MinimumMaximum = mod_collections.namedtuple( 'MinimumMaximum', ('minimum', 'maximum')) NearestLocationData = mod_collections.namedtuple( 'NearestLocationData', ('location', 'track_no', 'segment_no', 'point_no')) PointData = mod_collections.namedtuple( 'PointData', ('point', 'distance_from_start', 'track_no', 'segment_no', 'point_no')) class GPXException(Exception): """ Exception used for invalid GPX files. Is is used when the XML file is valid but something is wrong with the GPX data. """ pass class GPXBounds: gpx_10_fields = gpx_11_fields = [ mod_gpxfield.GPXField('min_latitude', attribute='minlat', type=mod_gpxfield.FLOAT_TYPE), mod_gpxfield.GPXField('max_latitude', attribute='maxlat', type=mod_gpxfield.FLOAT_TYPE), mod_gpxfield.GPXField('min_longitude', attribute='minlon', type=mod_gpxfield.FLOAT_TYPE), mod_gpxfield.GPXField('max_longitude', attribute='maxlon', type=mod_gpxfield.FLOAT_TYPE), ] __slots__ = ('min_latitude', 'max_latitude', 'min_longitude', 'max_longitude') def __init__(self, min_latitude=None, max_latitude=None, min_longitude=None, max_longitude=None): self.min_latitude = min_latitude self.max_latitude = max_latitude self.min_longitude = min_longitude self.max_longitude = max_longitude def __iter__(self): return (self.min_latitude, self.max_latitude, self.min_longitude, self.max_longitude,).__iter__() def __hash__(self): return mod_utils.hash_object(self, self.__slots__) class GPXXMLSyntaxException(GPXException): """ Exception used when the the XML syntax is invalid. The __cause__ can be a minidom or lxml exception (See http://www.python.org/dev/peps/pep-3134/). """ def __init__(self, message, original_exception): GPXException.__init__(self, message) self.__cause__ = original_exception class GPXWaypoint(mod_geo.Location): gpx_10_fields = GPX_10_POINT_FIELDS gpx_11_fields = GPX_11_POINT_FIELDS __slots__ = ('latitude', 'longitude', 'elevation', 'time', 'magnetic_variation', 'geoid_height', 'name', 'comment', 'description', 'source', 'link', 'link_text', 'symbol', 'type', 'type_of_gpx_fix', 'satellites', 'horizontal_dilution', 'vertical_dilution', 'position_dilution', 'age_of_dgps_data', 'dgps_id', 'link_type', 'extensions') def __init__(self, latitude=None, longitude=None, elevation=None, time=None, name=None, description=None, symbol=None, type=None, comment=None, horizontal_dilution=None, vertical_dilution=None, position_dilution=None): mod_geo.Location.__init__(self, latitude, longitude, elevation) self.latitude = latitude self.longitude = longitude self.elevation = elevation self.time = time self.magnetic_variation = None self.geoid_height = None self.name = name self.comment = comment self.description = description self.source = None self.link = None self.link_text = None self.link_type = None self.symbol = symbol self.type = type self.type_of_gpx_fix = None self.satellites = None self.horizontal_dilution = horizontal_dilution self.vertical_dilution = vertical_dilution self.position_dilution = position_dilution self.age_of_dgps_data = None self.dgps_id = None self.extensions = None def __str__(self): return '[wpt{%s}:%s,%s@%s]' % (self.name, self.latitude, self.longitude, self.elevation) def __repr__(self): representation = '%s, %s' % (self.latitude, self.longitude) for attribute in 'elevation', 'time', 'name', 'description', 'symbol', 'type', 'comment', \ 'horizontal_dilution', 'vertical_dilution', 'position_dilution': value = getattr(self, attribute) if value is not None: representation += ', %s=%s' % (attribute, repr(value)) return 'GPXWaypoint(%s)' % representation def get_max_dilution_of_precision(self): """ Only care about the max dop for filtering, no need to go into too much detail """ return max(self.horizontal_dilution, self.vertical_dilution, self.position_dilution) def __hash__(self): return mod_utils.hash_object(self, self.__slots__) class GPXRoutePoint(mod_geo.Location): gpx_10_fields = GPX_10_POINT_FIELDS gpx_11_fields = GPX_11_POINT_FIELDS __slots__ = ('latitude', 'longitude', 'elevation', 'time', 'magnetic_variation', 'geoid_height', 'name', 'comment', 'description', 'source', 'link', 'link_text', 'symbol', 'type', 'type_of_gpx_fix', 'satellites', 'horizontal_dilution', 'vertical_dilution', 'position_dilution', 'age_of_dgps_data', 'dgps_id', 'link_type', 'extensions') def __init__(self, latitude=None, longitude=None, elevation=None, time=None, name=None, description=None, symbol=None, type=None, comment=None, horizontal_dilution=None, vertical_dilution=None, position_dilution=None): mod_geo.Location.__init__(self, latitude, longitude, elevation) self.latitude = latitude self.longitude = longitude self.elevation = elevation self.time = time self.magnetic_variation = None self.geoid_height = None self.name = name self.comment = comment self.description = description self.source = None self.link = None self.link_text = None self.symbol = symbol self.type = type self.type_of_gpx_fix = None self.satellites = None self.horizontal_dilution = horizontal_dilution self.vertical_dilution = vertical_dilution self.position_dilution = position_dilution self.age_of_dgps_data = None self.dgps_id = None self.link_type = None self.extensions = None def __str__(self): return '[rtept{%s}:%s,%s@%s]' % (self.name, self.latitude, self.longitude, self.elevation) def __repr__(self): representation = '%s, %s' % (self.latitude, self.longitude) for attribute in 'elevation', 'time', 'name', 'description', 'symbol', 'type', 'comment', \ 'horizontal_dilution', 'vertical_dilution', 'position_dilution': value = getattr(self, attribute) if value is not None: representation += ', %s=%s' % (attribute, repr(value)) return 'GPXRoutePoint(%s)' % representation def __hash__(self): return mod_utils.hash_object(self, self.__slots__) class GPXRoute: gpx_10_fields = [ mod_gpxfield.GPXField('name'), mod_gpxfield.GPXField('comment', 'cmt'), mod_gpxfield.GPXField('description', 'desc'), mod_gpxfield.GPXField('source', 'src'), mod_gpxfield.GPXField('link', 'url'), mod_gpxfield.GPXField('link_text', 'urlname'), mod_gpxfield.GPXField('number', type=mod_gpxfield.INT_TYPE), mod_gpxfield.GPXComplexField('points', tag='rtept', classs=GPXRoutePoint, is_list=True), ] gpx_11_fields = [ mod_gpxfield.GPXField('name'), mod_gpxfield.GPXField('comment', 'cmt'), mod_gpxfield.GPXField('description', 'desc'), mod_gpxfield.GPXField('source', 'src'), 'link', mod_gpxfield.GPXField('link', attribute='href'), mod_gpxfield.GPXField('link_text', tag='text'), mod_gpxfield.GPXField('link_type', tag='type'), '/link', mod_gpxfield.GPXField('number', type=mod_gpxfield.INT_TYPE), mod_gpxfield.GPXField('type'), mod_gpxfield.GPXExtensionsField('extensions'), mod_gpxfield.GPXComplexField('points', tag='rtept', classs=GPXRoutePoint, is_list=True), ] __slots__ = ('name', 'comment', 'description', 'source', 'link', 'link_text', 'number', 'points', 'link_type', 'type', 'extensions') def __init__(self, name=None, description=None, number=None): self.name = name self.comment = None self.description = description self.source = None self.link = None self.link_text = None self.number = number self.points = [] self.link_type = None self.type = None self.extensions = None def remove_elevation(self): """ Removes elevation data from route """ for point in self.points: point.remove_elevation() def length(self): """ Computes length (2-dimensional) of route. Returns: ----------- length: float Length returned in meters """ return mod_geo.length_2d(self.points) def get_center(self): """ Get the center of the route. Returns ------- center: Location latitude: latitude of center in degrees longitude: longitude of center in degrees elevation: not calculated here """ if not self.points: return None if not self.points: return None sum_lat = 0. sum_lon = 0. n = 0. for point in self.points: n += 1. sum_lat += point.latitude sum_lon += point.longitude if not n: return mod_geo.Location(float(0), float(0)) return mod_geo.Location(latitude=sum_lat / n, longitude=sum_lon / n) def walk(self, only_points=False): """ Generator for iterating over route points Parameters ---------- only_points: boolean Only yield points (no index yielded) Yields ------ point: GPXRoutePoint A point in the GPXRoute point_no: int Not included in yield if only_points is true """ for point_no, point in enumerate(self.points): if only_points: yield point else: yield point, point_no def get_points_no(self): """ Get the number of points in route. Returns ---------- num_points : integer Number of points in route """ return len(self.points) def move(self, location_delta): """ Moves each point in the route. Parameters ---------- location_delta: LocationDelta LocationDelta to move each point """ for route_point in self.points: route_point.move(location_delta) def __hash__(self): return mod_utils.hash_object(self, self.__slots__) def __repr__(self): representation = '' for attribute in 'name', 'description', 'number': value = getattr(self, attribute) if value is not None: representation += '%s%s=%s' % (', ' if representation else '', attribute, repr(value)) representation += '%spoints=[%s])' % (', ' if representation else '', '...' if self.points else '') return 'GPXRoute(%s)' % representation class GPXTrackPoint(mod_geo.Location): gpx_10_fields = GPX_TRACK_POINT_FIELDS gpx_11_fields = GPX_11_POINT_FIELDS __slots__ = ('latitude', 'longitude', 'elevation', 'time', 'course', 'speed', 'magnetic_variation', 'geoid_height', 'name', 'comment', 'description', 'source', 'link', 'link_text', 'symbol', 'type', 'type_of_gpx_fix', 'satellites', 'horizontal_dilution', 'vertical_dilution', 'position_dilution', 'age_of_dgps_data', 'dgps_id', 'link_type', 'extensions') def __init__(self, latitude=None, longitude=None, elevation=None, time=None, symbol=None, comment=None, horizontal_dilution=None, vertical_dilution=None, position_dilution=None, speed=None, name=None): mod_geo.Location.__init__(self, latitude, longitude, elevation) self.latitude = latitude self.longitude = longitude self.elevation = elevation self.time = time self.course = None self.speed = speed self.magnetic_variation = None self.geoid_height = None self.name = name self.comment = comment self.description = None self.source = None self.link = None self.link_text = None self.link_type = None self.symbol = symbol self.type = None self.type_of_gpx_fix = None self.satellites = None self.horizontal_dilution = horizontal_dilution self.vertical_dilution = vertical_dilution self.position_dilution = position_dilution self.age_of_dgps_data = None self.dgps_id = None self.extensions = None def __repr__(self): representation = '%s, %s' % (self.latitude, self.longitude) for attribute in 'elevation', 'time', 'symbol', 'comment', 'horizontal_dilution', \ 'vertical_dilution', 'position_dilution', 'speed', 'name': value = getattr(self, attribute) if value is not None: representation += ', %s=%s' % (attribute, repr(value)) return 'GPXTrackPoint(%s)' % representation def adjust_time(self, delta): """ Adjusts the time of the point by the specified delta Parameters ---------- delta : datetime.timedelta Positive time delta will adjust time into the future Negative time delta will adjust time into the past """ if self.time: self.time += delta def remove_time(self): """ Will remove time metadata. """ self.time = None def time_difference(self, track_point): """ Get time difference between specified point and this point. Parameters ---------- track_point : GPXTrackPoint Returns ---------- time_difference : float Time difference returned in seconds """ if not self.time or not track_point or not track_point.time: return None time_1 = self.time time_2 = track_point.time if time_1 == time_2: return 0 if time_1 > time_2: delta = time_1 - time_2 else: delta = time_2 - time_1 return mod_utils.total_seconds(delta) def speed_between(self, track_point): """ Compute the speed between specified point and this point. NOTE: This is a computed speed, not the GPXTrackPoint speed that comes the GPX file. Parameters ---------- track_point : GPXTrackPoint Returns ---------- speed : float Speed returned in meters/second """ if not track_point: return None seconds = self.time_difference(track_point) length = self.distance_3d(track_point) if not length: length = self.distance_2d(track_point) if not seconds or length is None: return None return length / float(seconds) def __str__(self): return '[trkpt:%s,%s@%s@%s]' % (self.latitude, self.longitude, self.elevation, self.time) def __hash__(self): return mod_utils.hash_object(self, self.__slots__) class GPXTrackSegment: gpx_10_fields = [ mod_gpxfield.GPXComplexField('points', tag='trkpt', classs=GPXTrackPoint, is_list=True), ] gpx_11_fields = [ mod_gpxfield.GPXComplexField('points', tag='trkpt', classs=GPXTrackPoint, is_list=True), mod_gpxfield.GPXExtensionsField('extensions'), ] __slots__ = ('points', 'extensions', ) def __init__(self, points=None): self.points = points if points else [] self.extensions = None def simplify(self, max_distance=None): """ Simplify using the Ramer-Douglas-Peucker algorithm: http://en.wikipedia.org/wiki/Ramer-Douglas-Peucker_algorithm """ if not max_distance: max_distance = 10 self.points = mod_geo.simplify_polyline(self.points, max_distance) def reduce_points(self, min_distance): """ Reduces the number of points in the track segment. Segment points will be updated in place. Parameters ---------- min_distance : float The minimum separation in meters between points """ reduced_points = [] for point in self.points: if reduced_points: distance = reduced_points[-1].distance_3d(point) if distance >= min_distance: reduced_points.append(point) else: # Leave first point: reduced_points.append(point) self.points = reduced_points def _find_next_simplified_point(self, pos, max_distance): for candidate in range(pos + 1, len(self.points) - 1): for i in range(pos + 1, candidate): d = mod_geo.distance_from_line(self.points[i], self.points[pos], self.points[candidate]) if d > max_distance: return candidate - 1 return None def adjust_time(self, delta): """ Adjusts the time of all points in the segment by the specified delta Parameters ---------- delta : datetime.timedelta Positive time delta will adjust point times into the future Negative time delta will adjust point times into the past """ for track_point in self.points: track_point.adjust_time(delta) def remove_time(self): """ Removes time data for all points in the segment. """ for track_point in self.points: track_point.remove_time() def remove_elevation(self): """ Removes elevation data for all points in the segment. """ for track_point in self.points: track_point.remove_elevation() def length_2d(self): """ Computes 2-dimensional length (meters) of segment (only latitude and longitude, no elevation). Returns ---------- length : float Length returned in meters """ return mod_geo.length_2d(self.points) def length_3d(self): """ Computes 3-dimensional length of segment (latitude, longitude, and elevation). Returns ---------- length : float Length returned in meters """ return mod_geo.length_3d(self.points) def move(self, location_delta): """ Moves each point in the segment. Parameters ---------- location_delta: LocationDelta object Delta (distance/angle or lat/lon offset to apply each point in the segment """ for track_point in self.points: track_point.move(location_delta) def walk(self, only_points=False): """ Generator for iterating over segment points Parameters ---------- only_points: boolean Only yield points (no index yielded) Yields ------ point: GPXTrackPoint A point in the sement point_no: int Not included in yield if only_points is true """ for point_no, point in enumerate(self.points): if only_points: yield point else: yield point, point_no def get_points_no(self): """ Gets the number of points in segment. Returns ---------- num_points : integer Number of points in segment """ if not self.points: return 0 return len(self.points) def split(self, point_no): """ Splits the segment into two parts. If one of the split segments is empty it will not be added in the result. The segments will be split in place. Parameters ---------- point_no : integer The index of the track point in the segment to split """ part_1 = self.points[:point_no + 1] part_2 = self.points[point_no + 1:] return GPXTrackSegment(part_1), GPXTrackSegment(part_2) def join(self, track_segment): """ Joins with another segment """ self.points += track_segment.points def remove_point(self, point_no): """ Removes a point specificed by index from the segment """ if point_no < 0 or point_no >= len(self.points): return part_1 = self.points[:point_no] part_2 = self.points[point_no + 1:] self.points = part_1 + part_2 def get_moving_data(self, stopped_speed_threshold=None): """ Return a tuple of (moving_time, stopped_time, moving_distance, stopped_distance, max_speed) that may be used for detecting the time stopped, and max speed. Not that those values are not absolutely true, because the "stopped" or "moving" information aren't saved in the segment. Because of errors in the GPS recording, it may be good to calculate them on a reduced and smoothed version of the track. Parameters ---------- stopped_speed_threshold : float speeds (km/h) below this threshold are treated as if having no movement. Default is 1 km/h. Returns ---------- moving_data : MovingData : named tuple moving_time : float time (seconds) of segment in which movement was occuring stopped_time : float time (seconds) of segment in which no movement was occuring stopped_distance : float distance (meters) travelled during stopped times moving_distance : float distance (meters) travelled during moving times max_speed : float Maximum speed (m/s) during the segment. """ if not stopped_speed_threshold: stopped_speed_threshold = DEFAULT_STOPPED_SPEED_THRESHOLD moving_time = 0. stopped_time = 0. moving_distance = 0. stopped_distance = 0. speeds_and_distances = [] for i in range(1, len(self.points)): previous = self.points[i - 1] point = self.points[i] # Won't compute max_speed for first and last because of common GPS # recording errors, and because smoothing don't work well for those # points: first_or_last = i in [0, 1, len(self.points) - 1] if point.time and previous.time: timedelta = point.time - previous.time if point.elevation and previous.elevation: distance = point.distance_3d(previous) else: distance = point.distance_2d(previous) seconds = mod_utils.total_seconds(timedelta) speed_kmh = 0 if seconds > 0: # TODO: compute treshold in m/s instead this to kmh every time: speed_kmh = (distance / 1000.) / (mod_utils.total_seconds(timedelta) / 60. ** 2) #print speed, stopped_speed_threshold if speed_kmh <= stopped_speed_threshold: stopped_time += mod_utils.total_seconds(timedelta) stopped_distance += distance else: moving_time += mod_utils.total_seconds(timedelta) moving_distance += distance if distance and moving_time: speeds_and_distances.append((distance / mod_utils.total_seconds(timedelta), distance, )) max_speed = None if speeds_and_distances: max_speed = mod_geo.calculate_max_speed(speeds_and_distances) return MovingData(moving_time, stopped_time, moving_distance, stopped_distance, max_speed) def get_time_bounds(self): """ Gets the time bound (start and end) of the segment. returns ---------- time_bounds : TimeBounds named tuple start_time : datetime Start time of the first segment in track end time : datetime End time of the last segment in track """ start_time = None end_time = None for point in self.points: if point.time: if not start_time: start_time = point.time if point.time: end_time = point.time return TimeBounds(start_time, end_time) def get_bounds(self): """ Gets the latitude and longitude bounds of the segment. Returns ---------- bounds : Bounds named tuple min_latitude : float Minimum latitude of segment in decimal degrees [-90, 90] max_latitude : float Maxium latitude of segment in decimal degrees [-90, 90] min_longitude : float Minium longitude of segment in decimal degrees [-180, 180] max_longitude : float Maxium longitude of segment in decimal degrees [-180, 180] """ min_lat = None max_lat = None min_lon = None max_lon = None for point in self.points: if min_lat is None or point.latitude < min_lat: min_lat = point.latitude if max_lat is None or point.latitude > max_lat: max_lat = point.latitude if min_lon is None or point.longitude < min_lon: min_lon = point.longitude if max_lon is None or point.longitude > max_lon: max_lon = point.longitude return GPXBounds(min_lat, max_lat, min_lon, max_lon) def get_speed(self, point_no): """ Computes the speed at the specified point index. Parameters ---------- point_no : integer index of the point used to compute speed Returns ---------- speed : float Speed returned in m/s """ point = self.points[point_no] previous_point = None next_point = None if 0 < point_no < len(self.points): previous_point = self.points[point_no - 1] if 0 < point_no < len(self.points) - 1: next_point = self.points[point_no + 1] #mod_logging.debug('previous: %s' % previous_point) #mod_logging.debug('next: %s' % next_point) speed_1 = point.speed_between(previous_point) speed_2 = point.speed_between(next_point) if speed_1: speed_1 = abs(speed_1) if speed_2: speed_2 = abs(speed_2) if speed_1 and speed_2: return (speed_1 + speed_2) / 2. if speed_1: return speed_1 return speed_2 def add_elevation(self, delta): """ Adjusts elevation data for segment. Parameters ---------- delta : float Elevation delta in meters to apply to track """ mod_logging.debug('delta = %s' % delta) if not delta: return for track_point in self.points: if track_point.elevation is not None: track_point.elevation += delta def add_missing_data(self, get_data_function, add_missing_function): """ Calculate missing data. Parameters ---------- get_data_function : object Returns the data from point add_missing_function : void Function with the following arguments: array with points with missing data, the point before them (with data), the point after them (with data), and distance ratios between points in the interval (the sum of distances ratios will be 1) """ if not get_data_function: raise GPXException('Invalid get_data_function: %s' % get_data_function) if not add_missing_function: raise GPXException('Invalid add_missing_function: %s' % add_missing_function) # Points (*without* data) between two points (*with* data): interval = [] # Point (*with* data) before and after the interval: start_point = None previous_point = None for track_point in self.points: data = get_data_function(track_point) if data is None and previous_point: if not start_point: start_point = previous_point interval.append(track_point) else: if interval: distances_ratios = self._get_interval_distances_ratios(interval, start_point, track_point) add_missing_function(interval, start_point, track_point, distances_ratios) start_point = None interval = [] previous_point = track_point def _get_interval_distances_ratios(self, interval, start, end): assert start, start assert end, end assert interval, interval assert len(interval) > 0, interval distances = [] distance_from_start = 0 previous_point = start for point in interval: distance_from_start += float(point.distance_3d(previous_point)) distances.append(distance_from_start) previous_point = point from_start_to_end = distances[-1] + interval[-1].distance_3d(end) assert len(interval) == len(distances) return list(map( lambda distance: (distance / from_start_to_end) if from_start_to_end else 0, distances)) def get_duration(self): """ Calculates duration or track segment Returns ------- duration: float Duration in seconds """ if not self.points or len(self.points) < 2: return 0 # Search for start: first = self.points[0] if not first.time: first = self.points[1] last = self.points[-1] if not last.time: last = self.points[-2] if not last.time or not first.time: mod_logging.debug('Can\'t find time') return None if last.time < first.time: mod_logging.debug('Not enough time data') return None return mod_utils.total_seconds(last.time - first.time) def get_uphill_downhill(self): """ Calculates the uphill and downhill elevation climbs for the track segment. If elevation for some points is not found those are simply ignored. Returns ------- uphill_downhill: UphillDownhill named tuple uphill: float Uphill elevation climbs in meters downhill: float Downhill elevation descent in meters """ if not self.points: return UphillDownhill(0, 0) elevations = list(map(lambda point: point.elevation, self.points)) uphill, downhill = mod_geo.calculate_uphill_downhill(elevations) return UphillDownhill(uphill, downhill) def get_elevation_extremes(self): """ Calculate elevation extremes of track segment Returns ------- min_max_elevation: MinimumMaximum named tuple minimum: float Minimum elevation in meters maximum: float Maximum elevation in meters """ if not self.points: return MinimumMaximum(None, None) elevations = map(lambda location: location.elevation, self.points) elevations = filter(lambda elevation: elevation is not None, elevations) elevations = list(elevations) if len(elevations) == 0: return MinimumMaximum(None, None) return MinimumMaximum(min(elevations), max(elevations)) def get_location_at(self, time): """ Gets approx. location at given time. Note that, at the moment this method returns an instance of GPXTrackPoint in the future -- this may be a mod_geo.Location instance with approximated latitude, longitude and elevation! """ if not self.points: return None if not time: return None first_time = self.points[0].time last_time = self.points[-1].time if not first_time and not last_time: mod_logging.debug('No times for track segment') return None if not first_time <= time <= last_time: mod_logging.debug('Not in track (search for:%s, start:%s, end:%s)' % (time, first_time, last_time)) return None for point in self.points: if point.time and time <= point.time: # TODO: If between two points -- approx position! # return mod_geo.Location(point.latitude, point.longitude) return point def get_nearest_location(self, location): """ Return the (location, track_point_no) on this track segment """ if not self.points: return None, None result = None current_distance = None result_track_point_no = None for i in range(len(self.points)): track_point = self.points[i] if not result: result = track_point else: distance = track_point.distance_2d(location) #print current_distance, distance if not current_distance or distance < current_distance: current_distance = distance result = track_point result_track_point_no = i return result, result_track_point_no def smooth(self, vertical=True, horizontal=False, remove_extremes=False): """ "Smooths" the elevation graph. Can be called multiple times. """ if len(self.points) <= 3: return elevations = [] latitudes = [] longitudes = [] for point in self.points: elevations.append(point.elevation) latitudes.append(point.latitude) longitudes.append(point.longitude) avg_distance = 0 avg_elevation_delta = 1 if remove_extremes: # compute the average distance between two points: distances = [] elevations_delta = [] for i in range(len(self.points))[1:]: distances.append(self.points[i].distance_2d(self.points[i - 1])) elevation_1 = self.points[i].elevation elevation_2 = self.points[i - 1].elevation if elevation_1 is not None and elevation_2 is not None: elevations_delta.append(abs(elevation_1 - elevation_2)) if distances: avg_distance = 1.0 * sum(distances) / len(distances) if elevations_delta: avg_elevation_delta = 1.0 * sum(elevations_delta) / len(elevations_delta) # If The point moved more than this number * the average distance between two # points -- then is a candidate for deletion: # TODO: Make this a method parameter remove_2d_extremes_threshold = 1.75 * avg_distance remove_elevation_extremes_threshold = avg_elevation_delta * 5 # TODO: Param new_track_points = [self.points[0]] for i in range(len(self.points))[1:-1]: new_point = None point_removed = False if vertical and elevations[i - 1] and elevations[i] and elevations[i + 1]: old_elevation = self.points[i].elevation new_elevation = SMOOTHING_RATIO[0] * elevations[i - 1] + \ SMOOTHING_RATIO[1] * elevations[i] + \ SMOOTHING_RATIO[2] * elevations[i + 1] if not remove_extremes: self.points[i].elevation = new_elevation if remove_extremes: # The point must be enough distant to *both* neighbours: d1 = abs(old_elevation - elevations[i - 1]) d2 = abs(old_elevation - elevations[i + 1]) #print d1, d2, remove_2d_extremes_threshold # TODO: Remove extremes threshold is meant only for 2D, elevation must be # computed in different way! if min(d1, d2) < remove_elevation_extremes_threshold and abs(old_elevation - new_elevation) < remove_2d_extremes_threshold: new_point = self.points[i] else: #print 'removed elevation' point_removed = True else: new_point = self.points[i] else: new_point = self.points[i] if horizontal: old_latitude = self.points[i].latitude new_latitude = SMOOTHING_RATIO[0] * latitudes[i - 1] + \ SMOOTHING_RATIO[1] * latitudes[i] + \ SMOOTHING_RATIO[2] * latitudes[i + 1] old_longitude = self.points[i].longitude new_longitude = SMOOTHING_RATIO[0] * longitudes[i - 1] + \ SMOOTHING_RATIO[1] * longitudes[i] + \ SMOOTHING_RATIO[2] * longitudes[i + 1] if not remove_extremes: self.points[i].latitude = new_latitude self.points[i].longitude = new_longitude # TODO: This is not ideal.. Because if there are points A, B and C on the same # line but B is very close to C... This would remove B (and possibly) A even though # it is not an extreme. This is the reason for this algorithm: d1 = mod_geo.distance(latitudes[i - 1], longitudes[i - 1], None, latitudes[i], longitudes[i], None) d2 = mod_geo.distance(latitudes[i + 1], longitudes[i + 1], None, latitudes[i], longitudes[i], None) d = mod_geo.distance(latitudes[i - 1], longitudes[i - 1], None, latitudes[i + 1], longitudes[i + 1], None) #print d1, d2, d, remove_extremes if d1 + d2 > d * 1.5 and remove_extremes: d = mod_geo.distance(old_latitude, old_longitude, None, new_latitude, new_longitude, None) #print "d, threshold = ", d, remove_2d_extremes_threshold if d < remove_2d_extremes_threshold: new_point = self.points[i] else: #print 'removed 2d' point_removed = True else: new_point = self.points[i] if new_point and not point_removed: new_track_points.append(new_point) new_track_points.append(self.points[- 1]) #print 'len=', len(new_track_points) self.points = new_track_points def has_times(self): """ Returns if points in this segment contains timestamps. The first point, the last point, and 75% of the points must have times for this method to return true. """ if not self.points: return True # ... or otherwise one empty track segment would change the entire # track's "has_times" status! found = 0 for track_point in self.points: if track_point.time: found += 1 return len(self.points) > 2 and float(found) / float(len(self.points)) > .75 def has_elevations(self): """ Returns if points in this segment contains elevation. The first point, the last point, and at least 75% of the points must have elevation for this method to return true. """ if not self.points: return True # ... or otherwise one empty track segment would change the entire # track's "has_times" status! found = 0 for track_point in self.points: if track_point.elevation: found += 1 return len(self.points) > 2 and float(found) / float(len(self.points)) > .75 def __hash__(self): return mod_utils.hash_object(self, self.__slots__) def __repr__(self): return 'GPXTrackSegment(points=[%s])' % ('...' if self.points else '') def clone(self): return mod_copy.deepcopy(self) class GPXTrack: gpx_10_fields = [ mod_gpxfield.GPXField('name'), mod_gpxfield.GPXField('comment', 'cmt'), mod_gpxfield.GPXField('description', 'desc'), mod_gpxfield.GPXField('source', 'src'), mod_gpxfield.GPXField('link', 'url'), mod_gpxfield.GPXField('link_text', 'urlname'), mod_gpxfield.GPXField('number', type=mod_gpxfield.INT_TYPE), mod_gpxfield.GPXComplexField('segments', tag='trkseg', classs=GPXTrackSegment, is_list=True), ] gpx_11_fields = [ mod_gpxfield.GPXField('name'), mod_gpxfield.GPXField('comment', 'cmt'), mod_gpxfield.GPXField('description', 'desc'), mod_gpxfield.GPXField('source', 'src'), 'link', mod_gpxfield.GPXField('link', attribute='href'), mod_gpxfield.GPXField('link_text', tag='text'), mod_gpxfield.GPXField('link_type', tag='type'), '/link', mod_gpxfield.GPXField('number', type=mod_gpxfield.INT_TYPE), mod_gpxfield.GPXField('type'), mod_gpxfield.GPXExtensionsField('extensions'), mod_gpxfield.GPXComplexField('segments', tag='trkseg', classs=GPXTrackSegment, is_list=True), ] __slots__ = ('name', 'comment', 'description', 'source', 'link', 'link_text', 'number', 'segments', 'link_type', 'type', 'extensions') def __init__(self, name=None, description=None, number=None): self.name = name self.comment = None self.description = description self.source = None self.link = None self.link_text = None self.number = number self.segments = [] self.link_type = None self.type = None self.extensions = None def simplify(self, max_distance=None): """ Simplify using the Ramer-Douglas-Peucker algorithm: http://en.wikipedia.org/wiki/Ramer-Douglas-Peucker_algorithm """ for segment in self.segments: segment.simplify(max_distance=max_distance) def reduce_points(self, min_distance): """ Reduces the number of points in the track. Segment points will be updated in place. Parameters ---------- min_distance : float The minimum separation in meters between points """ for segment in self.segments: segment.reduce_points(min_distance) def adjust_time(self, delta): """ Adjusts the time of all segments in the track by the specified delta Parameters ---------- delta : datetime.timedelta Positive time delta will adjust time into the future Negative time delta will adjust time into the past """ for segment in self.segments: segment.adjust_time(delta) def remove_time(self): """ Removes time data for all points in all segments of track. """ for segment in self.segments: segment.remove_time() def remove_elevation(self): """ Removes elevation data for all points in all segments of track. """ for segment in self.segments: segment.remove_elevation() def remove_empty(self): """ Removes empty segments in track """ result = [] for segment in self.segments: if len(segment.points) > 0: result.append(segment) self.segments = result def length_2d(self): """ Computes 2-dimensional length (meters) of track (only latitude and longitude, no elevation). This is the sum of the 2D length of all segments. Returns ---------- length : float Length returned in meters """ length = 0 for track_segment in self.segments: d = track_segment.length_2d() if d: length += d return length def get_time_bounds(self): """ Gets the time bound (start and end) of the track. Returns ---------- time_bounds : TimeBounds named tuple start_time : datetime Start time of the first segment in track end time : datetime End time of the last segment in track """ start_time = None end_time = None for track_segment in self.segments: point_start_time, point_end_time = track_segment.get_time_bounds() if not start_time and point_start_time: start_time = point_start_time if point_end_time: end_time = point_end_time return TimeBounds(start_time, end_time) def get_bounds(self): """ Gets the latitude and longitude bounds of the track. Returns ---------- bounds : Bounds named tuple min_latitude : float Minimum latitude of track in decimal degrees [-90, 90] max_latitude : float Maxium latitude of track in decimal degrees [-90, 90] min_longitude : float Minium longitude of track in decimal degrees [-180, 180] max_longitude : float Maxium longitude of track in decimal degrees [-180, 180] """ min_lat = None max_lat = None min_lon = None max_lon = None for track_segment in self.segments: bounds = track_segment.get_bounds() if not mod_utils.is_numeric(min_lat) or (bounds.min_latitude and bounds.min_latitude < min_lat): min_lat = bounds.min_latitude if not mod_utils.is_numeric(max_lat) or (bounds.max_latitude and bounds.max_latitude > max_lat): max_lat = bounds.max_latitude if not mod_utils.is_numeric(min_lon) or (bounds.min_longitude and bounds.min_longitude < min_lon): min_lon = bounds.min_longitude if not mod_utils.is_numeric(max_lon) or (bounds.max_longitude and bounds.max_longitude > max_lon): max_lon = bounds.max_longitude return GPXBounds(min_lat, max_lat, min_lon, max_lon) def walk(self, only_points=False): """ Generator used to iterates through track Parameters ---------- only_point s: boolean Only yield points while walking Yields ---------- point : GPXTrackPoint Point in the track segment_no : integer Index of segment containint point. This is suppressed if only_points is True. point_no : integer Index of point. This is suppressed if only_points is True. """ for segment_no, segment in enumerate(self.segments): for point_no, point in enumerate(segment.points): if only_points: yield point else: yield point, segment_no, point_no def get_points_no(self): """ Get the number of points in all segments in the track. Returns ---------- num_points : integer Number of points in track """ result = 0 for track_segment in self.segments: result += track_segment.get_points_no() return result def length_3d(self): """ Computes 3-dimensional length of track (latitude, longitude, and elevation). This is the sum of the 3D length of all segments. Returns ---------- length : float Length returned in meters """ length = 0 for track_segment in self.segments: d = track_segment.length_3d() if d: length += d return length def split(self, track_segment_no, track_point_no): """ Splits one of the segments in the track in two parts. If one of the split segments is empty it will not be added in the result. The segments will be split in place. Parameters ---------- track_segment_no : integer The index of the segment to split track_point_no : integer The index of the track point in the segment to split """ new_segments = [] for i in range(len(self.segments)): segment = self.segments[i] if i == track_segment_no: segment_1, segment_2 = segment.split(track_point_no) if segment_1: new_segments.append(segment_1) if segment_2: new_segments.append(segment_2) else: new_segments.append(segment) self.segments = new_segments def join(self, track_segment_no, track_segment_no_2=None): """ Joins two segments of this track. The segments will be split in place. Parameters ---------- track_segment_no : integer The index of the first segment to join track_segment_no_2 : integer The index of second segment to join. If track_segment_no_2 is not provided,the join will be with the next segment after track_segment_no. """ if not track_segment_no_2: track_segment_no_2 = track_segment_no + 1 if track_segment_no_2 >= len(self.segments): return new_segments = [] for i in range(len(self.segments)): segment = self.segments[i] if i == track_segment_no: second_segment = self.segments[track_segment_no_2] segment.join(second_segment) new_segments.append(segment) elif i == track_segment_no_2: # Nothing, it is already joined pass else: new_segments.append(segment) self.segments = new_segments def get_moving_data(self, stopped_speed_threshold=None): """ Return a tuple of (moving_time, stopped_time, moving_distance, stopped_distance, max_speed) that may be used for detecting the time stopped, and max speed. Not that those values are not absolutely true, because the "stopped" or "moving" information aren't saved in the track. Because of errors in the GPS recording, it may be good to calculate them on a reduced and smoothed version of the track. Parameters ---------- stopped_speed_threshold : float speeds (km/h) below this threshold are treated as if having no movement. Default is 1 km/h. Returns ---------- moving_data : MovingData : named tuple moving_time : float time (seconds) of track in which movement was occuring stopped_time : float time (seconds) of track in which no movement was occuring stopped_distance : float distance (meters) travelled during stopped times moving_distance : float distance (meters) travelled during moving times max_speed : float Maximum speed (m/s) during the track. """ moving_time = 0. stopped_time = 0. moving_distance = 0. stopped_distance = 0. max_speed = 0. for segment in self.segments: track_moving_time, track_stopped_time, track_moving_distance, track_stopped_distance, track_max_speed = segment.get_moving_data(stopped_speed_threshold) moving_time += track_moving_time stopped_time += track_stopped_time moving_distance += track_moving_distance stopped_distance += track_stopped_distance if track_max_speed is not None and track_max_speed > max_speed: max_speed = track_max_speed return MovingData(moving_time, stopped_time, moving_distance, stopped_distance, max_speed) def add_elevation(self, delta): """ Adjusts elevation data for track. Parameters ---------- delta : float Elevation delta in meters to apply to track """ for track_segment in self.segments: track_segment.add_elevation(delta) def add_missing_data(self, get_data_function, add_missing_function): for track_segment in self.segments: track_segment.add_missing_data(get_data_function, add_missing_function) def move(self, location_delta): """ Moves each point in the track. Parameters ---------- location_delta: LocationDelta object Delta (distance/angle or lat/lon offset to apply each point in each segment of the track """ for track_segment in self.segments: track_segment.move(location_delta) def get_duration(self): """ Calculates duration or track Returns ------- duration: float Duration in seconds or None if any time data is missing """ if not self.segments: return 0 result = 0 for track_segment in self.segments: duration = track_segment.get_duration() if duration or duration == 0: result += duration elif duration is None: return None return result def get_uphill_downhill(self): """ Calculates the uphill and downhill elevation climbs for the track. If elevation for some points is not found those are simply ignored. Returns ------- uphill_downhill: UphillDownhill named tuple uphill: float Uphill elevation climbs in meters downhill: float Downhill elevation descent in meters """ if not self.segments: return UphillDownhill(0, 0) uphill = 0 downhill = 0 for track_segment in self.segments: current_uphill, current_downhill = track_segment.get_uphill_downhill() uphill += current_uphill downhill += current_downhill return UphillDownhill(uphill, downhill) def get_location_at(self, time): """ Gets approx. location at given time. Note that, at the moment this method returns an instance of GPXTrackPoint in the future -- this may be a mod_geo.Location instance with approximated latitude, longitude and elevation! """ result = [] for track_segment in self.segments: location = track_segment.get_location_at(time) if location: result.append(location) return result def get_elevation_extremes(self): """ Calculate elevation extremes of track Returns ------- min_max_elevation: MinimumMaximum named tuple minimum: float Minimum elevation in meters maximum: float Maximum elevation in meters """ if not self.segments: return MinimumMaximum(None, None) elevations = [] for track_segment in self.segments: (_min, _max) = track_segment.get_elevation_extremes() if _min is not None: elevations.append(_min) if _max is not None: elevations.append(_max) if len(elevations) == 0: return MinimumMaximum(None, None) return MinimumMaximum(min(elevations), max(elevations)) def get_center(self): """ Get the center of the route. Returns ------- center: Location latitude: latitude of center in degrees longitude: longitude of center in degrees elevation: not calculated here """ if not self.segments: return None sum_lat = 0 sum_lon = 0 n = 0 for track_segment in self.segments: for point in track_segment.points: n += 1. sum_lat += point.latitude sum_lon += point.longitude if not n: return mod_geo.Location(float(0), float(0)) return mod_geo.Location(latitude=sum_lat / n, longitude=sum_lon / n) def smooth(self, vertical=True, horizontal=False, remove_extremes=False): """ See: GPXTrackSegment.smooth() """ for track_segment in self.segments: track_segment.smooth(vertical, horizontal, remove_extremes) def has_times(self): """ See GPXTrackSegment.has_times() """ if not self.segments: return None result = True for track_segment in self.segments: result = result and track_segment.has_times() return result def has_elevations(self): """ Returns true if track data has elevation for all segments """ if not self.segments: return None result = True for track_segment in self.segments: result = result and track_segment.has_elevations() return result def get_nearest_location(self, location): """ Returns (location, track_segment_no, track_point_no) for nearest location on track """ if not self.segments: return None result = None distance = None result_track_segment_no = None result_track_point_no = None for i in range(len(self.segments)): track_segment = self.segments[i] nearest_location, track_point_no = track_segment.get_nearest_location(location) nearest_location_distance = None if nearest_location: nearest_location_distance = nearest_location.distance_2d(location) if not distance or nearest_location_distance < distance: if nearest_location: distance = nearest_location_distance result = nearest_location result_track_segment_no = i result_track_point_no = track_point_no return result, result_track_segment_no, result_track_point_no def clone(self): return mod_copy.deepcopy(self) def __hash__(self): return mod_utils.hash_object(self, self.__slots__) def __repr__(self): representation = '' for attribute in 'name', 'description', 'number': value = getattr(self, attribute) if value is not None: representation += '%s%s=%s' % (', ' if representation else '', attribute, repr(value)) representation += '%ssegments=%s' % (', ' if representation else '', repr(self.segments)) return 'GPXTrack(%s)' % representation class GPX: gpx_10_fields = [ mod_gpxfield.GPXField('version', attribute=True), mod_gpxfield.GPXField('creator', attribute=True), mod_gpxfield.GPXField('name'), mod_gpxfield.GPXField('description', 'desc'), mod_gpxfield.GPXField('author_name', 'author'), mod_gpxfield.GPXField('author_email', 'email'), mod_gpxfield.GPXField('link', 'url'), mod_gpxfield.GPXField('link_text', 'urlname'), mod_gpxfield.GPXField('time', type=mod_gpxfield.TIME_TYPE), mod_gpxfield.GPXField('keywords'), mod_gpxfield.GPXComplexField('bounds', classs=GPXBounds), mod_gpxfield.GPXComplexField('waypoints', classs=GPXWaypoint, tag='wpt', is_list=True), mod_gpxfield.GPXComplexField('routes', classs=GPXRoute, tag='rte', is_list=True), mod_gpxfield.GPXComplexField('tracks', classs=GPXTrack, tag='trk', is_list=True), ] gpx_11_fields = [ mod_gpxfield.GPXField('version', attribute=True), mod_gpxfield.GPXField('creator', attribute=True), 'metadata', mod_gpxfield.GPXField('name', 'name'), mod_gpxfield.GPXField('description', 'desc'), 'author', mod_gpxfield.GPXField('author_name', 'name'), mod_gpxfield.GPXEmailField('author_email', 'email'), 'link', mod_gpxfield.GPXField('author_link', attribute='href'), mod_gpxfield.GPXField('author_link_text', tag='text'), mod_gpxfield.GPXField('author_link_type', tag='type'), '/link', '/author', 'copyright', mod_gpxfield.GPXField('copyright_author', attribute='author'), mod_gpxfield.GPXField('copyright_year', tag='year'), mod_gpxfield.GPXField('copyright_license', tag='license'), '/copyright', 'link', mod_gpxfield.GPXField('link', attribute='href'), mod_gpxfield.GPXField('link_text', tag='text'), mod_gpxfield.GPXField('link_type', tag='type'), '/link', mod_gpxfield.GPXField('time', type=mod_gpxfield.TIME_TYPE), mod_gpxfield.GPXField('keywords'), mod_gpxfield.GPXComplexField('bounds', classs=GPXBounds), mod_gpxfield.GPXExtensionsField('metadata_extensions', tag='extensions'), '/metadata', mod_gpxfield.GPXComplexField('waypoints', classs=GPXWaypoint, tag='wpt', is_list=True), mod_gpxfield.GPXComplexField('routes', classs=GPXRoute, tag='rte', is_list=True), mod_gpxfield.GPXComplexField('tracks', classs=GPXTrack, tag='trk', is_list=True), mod_gpxfield.GPXExtensionsField('extensions'), ] __slots__ = ('version', 'creator', 'name', 'description', 'author_name', 'author_email', 'link', 'link_text', 'time', 'keywords', 'bounds', 'waypoints', 'routes', 'tracks', 'author_link', 'author_link_text', 'author_link_type', 'copyright_author', 'copyright_year', 'copyright_license', 'link_type', 'metadata_extensions', 'extensions') def __init__(self): self.version = None self.creator = None self.name = None self.description = None self.link = None self.link_text = None self.link_type = None self.time = None self.keywords = None self.bounds = None self.author_name = None self.author_email = None self.author_link = None self.author_link_text = None self.author_link_type = None self.copyright_author = None self.copyright_year = None self.copyright_license = None self.metadata_extensions = None self.extensions = None self.waypoints = [] self.routes = [] self.tracks = [] def simplify(self, max_distance=None): """ Simplify using the Ramer-Douglas-Peucker algorithm: http://en.wikipedia.org/wiki/Ramer-Douglas-Peucker_algorithm """ for track in self.tracks: track.simplify(max_distance=max_distance) def reduce_points(self, max_points_no=None, min_distance=None): """ Reduces the number of points. Points will be updated in place. Parameters ---------- max_points : int The maximum number of points to include in the GPX min_distance : float The minimum separation in meters between points """ if max_points_no is None and min_distance is None: raise ValueError("Either max_point_no or min_distance must be supplied") if max_points_no is not None and max_points_no < 2: raise ValueError("max_points_no must be greater than or equal to 2") points_no = len(list(self.walk())) if max_points_no is not None and points_no <= max_points_no: # No need to reduce points only if no min_distance is specified: if not min_distance: return length = self.length_3d() min_distance = min_distance or 0 max_points_no = max_points_no or 1000000000 min_distance = max(min_distance, mod_math.ceil(length / float(max_points_no))) for track in self.tracks: track.reduce_points(min_distance) # TODO mod_logging.debug('Track reduced to %s points' % self.get_track_points_no()) def adjust_time(self, delta): """ Adjusts the time of all points in all of the segments of all tracks by the specified delta. Parameters ---------- delta : datetime.timedelta Positive time delta will adjust times into the future Negative time delta will adjust times into the past """ if self.time: self.time += delta for track in self.tracks: track.adjust_time(delta) def remove_time(self): """ Removes time data. """ for track in self.tracks: track.remove_time() def remove_elevation(self, tracks=True, routes=False, waypoints=False): """ Removes elevation data. """ if tracks: for track in self.tracks: track.remove_elevation() if routes: for route in self.routes: route.remove_elevation() if waypoints: for waypoint in self.waypoints: waypoint.remove_elevation() def get_time_bounds(self): """ Gets the time bounds (start and end) of the GPX file. Returns ---------- time_bounds : TimeBounds named tuple start_time : datetime Start time of the first segment in track end time : datetime End time of the last segment in track """ start_time = None end_time = None for track in self.tracks: track_start_time, track_end_time = track.get_time_bounds() if not start_time: start_time = track_start_time if track_end_time: end_time = track_end_time return TimeBounds(start_time, end_time) def get_bounds(self): """ Gets the latitude and longitude bounds of the GPX file. Returns ---------- bounds : Bounds named tuple min_latitude : float Minimum latitude of track in decimal degrees [-90, 90] max_latitude : float Maxium latitude of track in decimal degrees [-90, 90] min_longitude : float Minium longitude of track in decimal degrees [-180, 180] max_longitude : float Maxium longitude of track in decimal degrees [-180, 180] """ min_lat = None max_lat = None min_lon = None max_lon = None for track in self.tracks: bounds = track.get_bounds() if not mod_utils.is_numeric(min_lat) or bounds.min_latitude < min_lat: min_lat = bounds.min_latitude if not mod_utils.is_numeric(max_lat) or bounds.max_latitude > max_lat: max_lat = bounds.max_latitude if not mod_utils.is_numeric(min_lon) or bounds.min_longitude < min_lon: min_lon = bounds.min_longitude if not mod_utils.is_numeric(max_lon) or bounds.max_longitude > max_lon: max_lon = bounds.max_longitude return GPXBounds(min_lat, max_lat, min_lon, max_lon) def get_points_no(self): """ Get the number of points in all segments of all track. Returns ---------- num_points : integer Number of points in GPX """ result = 0 for track in self.tracks: result += track.get_points_no() return result def refresh_bounds(self): """ Compute bounds and reload min_latitude, max_latitude, min_longitude and max_longitude properties of this object """ bounds = self.get_bounds() self.bounds = bounds def smooth(self, vertical=True, horizontal=False, remove_extremes=False): """ See GPXTrackSegment.smooth(...) """ for track in self.tracks: track.smooth(vertical=vertical, horizontal=horizontal, remove_extremes=remove_extremes) def remove_empty(self): """ Removes segments, routes """ routes = [] for route in self.routes: if len(route.points) > 0: routes.append(route) self.routes = routes for track in self.tracks: track.remove_empty() def get_moving_data(self, stopped_speed_threshold=None): """ Return a tuple of (moving_time, stopped_time, moving_distance, stopped_distance, max_speed) that may be used for detecting the time stopped, and max speed. Not that those values are not absolutely true, because the "stopped" or "moving" information aren't saved in the track. Because of errors in the GPS recording, it may be good to calculate them on a reduced and smoothed version of the track. Something like this: cloned_gpx = gpx.clone() cloned_gpx.reduce_points(2000, min_distance=10) cloned_gpx.smooth(vertical=True, horizontal=True) cloned_gpx.smooth(vertical=True, horizontal=False) moving_time, stopped_time, moving_distance, stopped_distance, max_speed_ms = cloned_gpx.get_moving_data max_speed_kmh = max_speed_ms * 60. ** 2 / 1000. Experiment with your own variations to get the values you expect. Max speed is in m/s. """ moving_time = 0. stopped_time = 0. moving_distance = 0. stopped_distance = 0. max_speed = 0. for track in self.tracks: track_moving_time, track_stopped_time, track_moving_distance, track_stopped_distance, track_max_speed = track.get_moving_data(stopped_speed_threshold) moving_time += track_moving_time stopped_time += track_stopped_time moving_distance += track_moving_distance stopped_distance += track_stopped_distance if track_max_speed > max_speed: max_speed = track_max_speed return MovingData(moving_time, stopped_time, moving_distance, stopped_distance, max_speed) def split(self, track_no, track_segment_no, track_point_no): """ Splits one of the segments of a track in two parts. If one of the split segments is empty it will not be added in the result. The segments will be split in place. Parameters ---------- track_no : integer The index of the track to split track_segment_no : integer The index of the segment to split track_point_no : integer The index of the track point in the segment to split """ track = self.tracks[track_no] track.split(track_segment_no=track_segment_no, track_point_no=track_point_no) def length_2d(self): """ Computes 2-dimensional length of the GPX file (only latitude and longitude, no elevation). This is the sum of 3D length of all segments in all tracks. Returns ---------- length : float Length returned in meters """ result = 0 for track in self.tracks: length = track.length_2d() if length or length == 0: result += length return result def length_3d(self): """ Computes 3-dimensional length of the GPX file (latitude, longitude, and elevation). This is the sum of 3D length of all segments in all tracks. Returns ---------- length : float Length returned in meters """ result = 0 for track in self.tracks: length = track.length_3d() if length or length == 0: result += length return result def walk(self, only_points=False): """ Generator used to iterates through points in GPX file Parameters ---------- only_point s: boolean Only yield points while walking Yields ---------- point : GPXTrackPoint Point in the track track_no : integer Index of track containint point. This is suppressed if only_points is True. segment_no : integer Index of segment containint point. This is suppressed if only_points is True. point_no : integer Index of point. This is suppressed if only_points is True. """ for track_no, track in enumerate(self.tracks): for segment_no, segment in enumerate(track.segments): for point_no, point in enumerate(segment.points): if only_points: yield point else: yield point, track_no, segment_no, point_no def get_track_points_no(self): """ Number of track points, *without* route and waypoints """ result = 0 for track in self.tracks: for segment in track.segments: result += len(segment.points) return result def get_duration(self): """ Calculates duration of GPX file Returns ------- duration: float Duration in seconds or None if time data is not fully populated. """ if not self.tracks: return 0 result = 0 for track in self.tracks: duration = track.get_duration() if duration or duration == 0: result += duration elif duration is None: return None return result def get_uphill_downhill(self): """ Calculates the uphill and downhill elevation climbs for the gpx file. If elevation for some points is not found those are simply ignored. Returns ------- uphill_downhill: UphillDownhill named tuple uphill: float Uphill elevation climbs in meters downhill: float Downhill elevation descent in meters """ if not self.tracks: return UphillDownhill(0, 0) uphill = 0 downhill = 0 for track in self.tracks: current_uphill, current_downhill = track.get_uphill_downhill() uphill += current_uphill downhill += current_downhill return UphillDownhill(uphill, downhill) def get_location_at(self, time): """ Gets approx. location at given time. Note that, at the moment this method returns an instance of GPXTrackPoint in the future -- this may be a mod_geo.Location instance with approximated latitude, longitude and elevation! """ result = [] for track in self.tracks: locations = track.get_location_at(time) for location in locations: result.append(location) return result def get_elevation_extremes(self): """ Calculate elevation extremes of GPX file Returns ------- min_max_elevation: MinimumMaximum named tuple minimum: float Minimum elevation in meters maximum: float Maximum elevation in meters """ if not self.tracks: return MinimumMaximum(None, None) elevations = [] for track in self.tracks: (_min, _max) = track.get_elevation_extremes() if _min is not None: elevations.append(_min) if _max is not None: elevations.append(_max) if len(elevations) == 0: return MinimumMaximum(None, None) return MinimumMaximum(min(elevations), max(elevations)) def get_points_data(self, distance_2d=False): """ Returns a list of tuples containing the actual point, its distance from the start, track_no, segment_no, and segment_point_no """ distance_from_start = 0 previous_point = None # (point, distance_from_start) pairs: points = [] for track_no in range(len(self.tracks)): track = self.tracks[track_no] for segment_no in range(len(track.segments)): segment = track.segments[segment_no] for point_no in range(len(segment.points)): point = segment.points[point_no] if previous_point and point_no > 0: if distance_2d: distance = point.distance_2d(previous_point) else: distance = point.distance_3d(previous_point) distance_from_start += distance points.append(PointData(point, distance_from_start, track_no, segment_no, point_no)) previous_point = point return points def get_nearest_locations(self, location, threshold_distance=0.01): """ Returns a list of locations of elements like consisting of points where the location may be on the track threshold_distance is the the minimum distance from the track so that the point *may* be counted as to be "on the track". For example 0.01 means 1% of the track distance. """ assert location assert threshold_distance result = [] points = self.get_points_data() if not points: return () distance = points[- 1][1] threshold = distance * threshold_distance min_distance_candidate = None distance_from_start_candidate = None track_no_candidate = None segment_no_candidate = None point_no_candidate = None for point, distance_from_start, track_no, segment_no, point_no in points: distance = location.distance_3d(point) if distance < threshold: if min_distance_candidate is None or distance < min_distance_candidate: min_distance_candidate = distance distance_from_start_candidate = distance_from_start track_no_candidate = track_no segment_no_candidate = segment_no point_no_candidate = point_no else: if distance_from_start_candidate is not None: result.append((distance_from_start_candidate, track_no_candidate, segment_no_candidate, point_no_candidate)) min_distance_candidate = None distance_from_start_candidate = None track_no_candidate = None segment_no_candidate = None point_no_candidate = None if distance_from_start_candidate is not None: result.append(NearestLocationData(distance_from_start_candidate, track_no_candidate, segment_no_candidate, point_no_candidate)) return result def get_nearest_location(self, location): """ Returns (location, track_no, track_segment_no, track_point_no) for the nearest location on map """ if not self.tracks: return None result = None distance = None result_track_no = None result_segment_no = None result_point_no = None for i in range(len(self.tracks)): track = self.tracks[i] nearest_location, track_segment_no, track_point_no = track.get_nearest_location(location) nearest_location_distance = None if nearest_location: nearest_location_distance = nearest_location.distance_2d(location) if not distance or nearest_location_distance < distance: result = nearest_location distance = nearest_location_distance result_track_no = i result_segment_no = track_segment_no result_point_no = track_point_no return NearestLocationData(result, result_track_no, result_segment_no, result_point_no) def add_elevation(self, delta): """ Adjusts elevation data of GPX data. Parameters ---------- delta : float Elevation delta in meters to apply to GPX data """ for track in self.tracks: track.add_elevation(delta) def add_missing_data(self, get_data_function, add_missing_function): for track in self.tracks: track.add_missing_data(get_data_function, add_missing_function) def add_missing_elevations(self): def _add(interval, start, end, distances_ratios): assert start assert end assert start.elevation is not None assert end.elevation is not None assert interval assert len(interval) == len(distances_ratios) for i in range(len(interval)): interval[i].elevation = start.elevation + distances_ratios[i] * (end.elevation - start.elevation) self.add_missing_data(get_data_function=lambda point: point.elevation, add_missing_function=_add) def add_missing_times(self): def _add(interval, start, end, distances_ratios): if (not start) or (not end) or (not start.time) or (not end.time): return assert interval assert len(interval) == len(distances_ratios) seconds_between = float(mod_utils.total_seconds(end.time - start.time)) for i in range(len(interval)): point = interval[i] ratio = distances_ratios[i] point.time = start.time + mod_datetime.timedelta( seconds=ratio * seconds_between) self.add_missing_data(get_data_function=lambda point: point.time, add_missing_function=_add) def add_missing_speeds(self): """ The missing speeds are added to a segment. The weighted harmonic mean is used to approximate the speed at a :obj:'~.GPXTrackPoint'. For this to work the speed of the first and last track point in a segment needs to be known. """ def _add(interval, start, end, distances_ratios): if (not start) or (not end) or (not start.time) or (not end.time): return assert interval assert len(interval) == len(distances_ratios) time_dist_before = (interval[0].time_difference(start), interval[0].distance_3d(start)) time_dist_after = (interval[-1].time_difference(end), interval[-1].distance_3d(end)) # Assemble list of times and distance to neighboring points times_dists = [(interval[i].time_difference(interval[i+1]), interval[i].distance_3d(interval[i+1])) for i in range(len(interval) - 1)] times_dists.insert(0, time_dist_before) times_dists.append(time_dist_after) for i, point in enumerate(interval): time_left, dist_left = times_dists[i] time_right, dist_right = times_dists[i+1] point.speed = float(dist_left + dist_right) / (time_left + time_right) self.add_missing_data(get_data_function=lambda point: point.speed, add_missing_function=_add) def move(self, location_delta): """ Moves each point in the gpx file (routes, waypoints, tracks). Parameters ---------- location_delta: LocationDelta LocationDelta to move each point """ for route in self.routes: route.move(location_delta) for waypoint in self.waypoints: waypoint.move(location_delta) for track in self.tracks: track.move(location_delta) def to_xml(self, version=None): """ FIXME: Note, this method will change self.version """ if not version: if self.version: version = self.version else: version = '1.0' if version != '1.0' and version != '1.1': raise GPXException('Invalid version %s' % version) self.version = version if not self.creator: self.creator = 'gpx.py -- https://github.com/tkrajina/gpxpy' v = version.replace('.', '/') xml_attributes = { 'xmlns:xsi': 'http://www.w3.org/2001/XMLSchema-instance', 'xmlns': 'http://www.topografix.com/GPX/%s' % v, 'xsi:schemaLocation': 'http://www.topografix.com/GPX/%s http://www.topografix.com/GPX/%s/gpx.xsd' % (v, v) } content = mod_gpxfield.gpx_fields_to_xml(self, 'gpx', version, custom_attributes=xml_attributes) return '\n' + content.strip() def smooth(self, vertical=True, horizontal=False, remove_extremes=False): for track in self.tracks: track.smooth(vertical, horizontal, remove_extremes) def has_times(self): """ See GPXTrackSegment.has_times() """ if not self.tracks: return None result = True for track in self.tracks: result = result and track.has_times() return result def has_elevations(self): """ See GPXTrackSegment.has_elevations()) """ if not self.tracks: return None result = True for track in self.tracks: result = result and track.has_elevations() return result def __hash__(self): return mod_utils.hash_object(self, self.__slots__) def __repr__(self): representation = '' for attribute in 'waypoints', 'routes', 'tracks': value = getattr(self, attribute) if value: representation += '%s%s=%s' % (', ' if representation else '', attribute, repr(value)) return 'GPX(%s)' % representation def clone(self): return mod_copy.deepcopy(self) # Add attributes and fill default values (lists or None) for all GPX elements: for var_name in dir(): var_value = vars()[var_name] if hasattr(var_value, 'gpx_10_fields') or hasattr(var_value, 'gpx_11_fields'): #print('Check/fill %s' % var_value) mod_gpxfield.gpx_check_slots_and_default_values(var_value)