
Java COM

20 MARCH 2002

JDiff – What Really Changed?

J D I F F R E P O R T

This article uses JDiff to show what
changed between J2SE 1.3 and J2SE 1.4,
and describes how developers can use
JDiff to document the changes between
two versions of their own products as
easily as running Javadoc.

What Changed Between J2SE 1.3 and J2SE 1.4?
Release notes are usually high-level

descriptions of feature changes. Product
reference manuals tend to be large. And
it’s hard to compare different product
versions in Web browsers’ windows.
Sun’s J2SE 1.4 product, with all its new
features, is no exception. When you
want to know exactly what changed
between two versions of a file, “diff” is
the familiar command-line tool for the
job. When you want a precise compari-
son between two Java APIs, I suggest
using JDiff.

Figures 1 and 2 show typical HTML
documentation generated by JDiff. In
this case, the J2SE 1.3.0 API and the J2SE
1.4.0 API are compared using JDiff 1.0.6.
Figure 1 is a screenshot of some of the
packages that were changed between
versions, and Figure 2 shows the details
for a particular class, java.lang.Throw-
able. Every change in the API is report-
ed, from new methods and fields to
changes in parameter types and which
exceptions are thrown. Even the
changes in the documentation for each
class and method can be reported.

The best way to view a JDiff report is
in a Web browser. (The report compar-
ing J2SE 1.3 and J2SE 1.4 can be found at
www.jdiff.org.)

What a JDiff Report Tells You
The HTML report generated by JDiff

describes the differences between two
Java APIs. The right-hand frame initially
contains a summary of the packages
that were removed, added, or otherwise
changed in some way. There are links to
other JDiff-generated pages that

describe the changes for each package
and class in more detail. To help recall
what each package and class is used for,
the first sentence of the Javadoc com-
ment (a “documentation block”) in the
source code is shown to the right of each
entry.

The layout of the report resembles
Javadoc-generated HTML; to prevent
confusion, JDiff uses a different colored
background and all links from JDiff
pages to Javadoc HTML pages are in a
monospaced font.

Indexes
A good question whenever an API

changes is: “What was removed?” This is
because removed (and changed) con-
structors, methods, and fields will cause
an application to fail, ideally at compile
time. Constructors, methods, and fields
that were newly added are less likely to
cause an application to fail. JDiff pro-
vides indexes of which packages, class-
es, constructors, methods, and fields
were removed, added, or changed. It
also provides indexes of all the removals,
additions, and changes. The indexes are
all HTML links, but they’re not under-
lined so they’re easier to read quickly.

The indexes are a particularly useful
feature when JDiff is used to track
changes in an API as a product is being
developed. Each part of the team can
see precisely what has changed between
the different versions.

Links
One feature that makes JDiff-gener-

ated reports useful is the large number
of HTML links in a report. Every JDiff
package and class page has links to the
Javadoc-generated HTML pages for the
specific package or class, making it easy
to refer to an API’s existing documenta-
tion. The JDiff navigation bar contains
links to the page to each class’s package,
and also to the top-level summary page.

Just like Javadoc, there are also links to
the previous and next package or class,
and to the sections within a page. All
pages have links to nonframe versions of
the page for browsers (and users) that
can’t deal with HTML frames.

Features for Developers
Two useful features for API develop-

ers are tracking changes in documenta-
tion and statistics about the changes
between two APIs. This information is
generally less useful to customers who
use the API, so the features are optional
in all JDiff reports.

Documentation Changes
JDiff can track changes in the

Javadoc comments in the source code
that’s used to produce Javadoc HTML.
While such changes are rarely of great
interest to customers, it’s very helpful for
developers to know how the description
of a method or field has changed during
the development of an API. Each
changed constructor, method, and field
has links to the old documentation, the
new documentation, and the highlight-
ed differences between the two. Figure 3
shows some of the documentation
changes between J2SE 1.3 and J2SE 1.4.

Statistics
Another good question whenever an

API changes is: “How much has
changed?” To answer this, JDiff can track
the statistics for how many constructors,
methods, and fields changed in a class,
how many classes changed in a package,
and so on. The formula is very simple:

Percentage Change = 100 x (Number of

Additions + Number of Removals + (2 x

Number of Changes))/ Total Number of

Packages or Classes in Both APIs

For example, suppose a Java API is
made up of 15 Java packages, and in the

WRITTEN BY
MATTHEW B. DOAR

One of the most common questions Java developers ask
after downloading a new version of a product is: “What really
changed?” JDiff (www.jdiff.org) is an open source Java tool, based
on Javadoc and developed by the author, that produces HTML
documentation describing the precise API changes between two
versions of a product.

Comparing Java APIs

J2
SE

H
om

e
J2

E
E

J2
M

E

21MARCH 2002

Java COM

?

Java COM

22 MARCH 2002

J D I F F R E P O R T

next release of the API two new packages
are added and one existing package is
removed so that there are now 16 pack-
ages total. Also suppose that 3 of the 16
existing packages have been changed. In
this example, the percentage change
between the two APIs is 100 x (2 + 1 + (2
x 3))/(15 + 16) = 29%. Using this formula,
if two APIs are identical, the percentage
change will be 0%, and if they’re totally
different, the percentage change
between them will be 100%.

JDiff reports the percentage changes
in each changed class, and also in each
changed package, by applying the for-
mula recursively. The percentage
changes are also shown sorted in HTML
tables in the report, and also in a format
suitable for importing to popular
spreadsheet applications. This makes it
easy to identify when testing and docu-
menting which parts of an API have
changed most between different ver-

sions.
Table 1 shows the percentage

changes for some popular APIs, not
including documentation changes.
Interestingly, the percentage change
between J2SE 1.2 and J2SE 1.3.0 was
about 11%, but was about 33% between
J2SE 1.3.0 and J2SE 1.4.0, confirming
opinions that the changes from J2SE 1.3
to J2SE 1.4 are larger than the changes in
the previous major release. The break-
down of the statistics for the core Java
classes show that Sun is very careful to
add or change only packages and class-
es, and that minor releases really do
contain only bug fixes, as opposed to
API changes.
different APIs

How to Run JDiff on Your Own APIs
As shown in Figure 4, there are three

fairly straightforward steps for using
JDiff. Each step involves running

Javadoc, and can be executed at the
command line in a script or batch file, or
added to a makefile or ANT build file as
part of a build process.

Step 1: Use JDiff to generate an XML file that rep-
resents the old API’s packages.

javadoc -doclet jdiff.JDiff

-docletpath ..\..\lib\jdiff.jar

-apiname "SuperProduct 1.0"

-sourcepath ..\SuperProduct1.0 <old

packages>

This step scans the source code of
the old API. The -doclet and -docletpath
options are the standard options used
by Javadoc to run the JDiff doclet. The -
apiname option creates a unique identi-
fier for the API, and the -sourcepath
option indicates where to find the Java
packages that make up the old API. <old
packages> lists the precise packages that
are scanned, just like Javadoc.

Step 2: Use JDiff to generate an XML file that rep-
resents the new API’s packages.

javadoc -doclet jdiff.JDiff

-docletpath ..\..\lib\jdiff.jar

-apiname "SuperProduct 2.0"

-sourcepath ..\SuperProduct2.0 <new

packages>

This step scans the source code of
the new API, located in the
“SuperProduct2.0” directory. The new
API is given the unique identifier of
“SuperProduct 2.0”.

Step 3: Use JDiff to compare the contents of the
two XML files and generate an HTML report of
the differences.

javadoc -doclet jdiff.JDiff

-docletpath ..\..\lib\jdiff.jar

-d newdocs -stats

-oldapi "SuperProduct 1.0"

-newapi "SuperProduct 2.0"

-javadocold "../../olddocs/"

-javadocnew "../../newdocs/"

..\..\lib\Null.java

The final step compares the
“SuperProduct 1.0” API and the
“SuperProduct 2.0” API, with links to the
Javadoc documentation in the olddocs
and newdocs directories, respectively.
The -d option makes the HTML report
generated by JDiff appear in the directo-
ry newdocs\changes.html, and the -
stats option reports statistics about the
differences between the APIs. The file
Null.java is present only because
Javadoc has to read in at least one file,
even if the doclet doesn’t use it.

J2
SE

H
om

e
J2

E
E

J2
M

E

FIGURE 1 JDiff Report showing package changes

FIGURE 2 The changes in the class java.lang.Throwable

23MARCH 2002

Java COM

?

Java COM

24 MARCH 2002

J D I F F R E P O R T

To make the JDiff report more useful,
it helps if there’s existing Javadoc HTML
documentation for both APIs for HTML
links from the report. It also helps if
there are Javadoc comment blocks in the
source code for the packages from each
API, since they’re used in the right-hand
summary text in each entry in the
report; however, you don’t need them to
compare APIs. You can even compare
the APIs in two JAR files, where docu-
mentation blocks are not available.

JDiff also lets you write specific com-
ments for each change between two
APIs. You write a comment for each
change into a “comments.xml” file with
any text editor, and this file is read in
when the report is generated. The com-
ments file is regenerated after the report
is finished so the comments are not lost
after being incorporated into the
report’s HTML files. If no comments are
provided, by default JDiff does its best to
find appropriate comments for each
change from the Javadoc comment
blocks in the source code.

Scaling Issues
When scanning large APIs such as

J2SE 1.4, which has 129 different pack-
ages in it, Steps 1 and 2 can take a few

minutes to run on a
450MHz, 256MB
Pentium III machine.
Once the XML files
have been generated
in Steps 1 and 2
though, they don’t
need to be regenerat-
ed each time a JDiff

report is created. Step 3 can be repeated
with different options each time, using
the same XML files from Steps 1 and 2.
In Step 3 it took about three minutes to
generate a JDiff report for the two J2SE
APIs running on the same 450MHz,
256MB Pentium III machine.

With large APIs, the XML files gener-
ated in Steps 1 or 2 can be quite large –
about 20MB in the case of J2SE 1.4, if all
the documentation is included for com-
parison. These files can be archived with
each release to avoid having to regener-
ate them later on. They can also be
made smaller if changes in documenta-
tion are not tracked, since much of the
content of each XML file is the entire
documentation from each API’s Javadoc
comment block. The –firstsentence
option can be used in Steps 1 and 2 to
minimize the size of the XML files by
storing only the first sentence of each
Javadoc comment block in the XML file.
The -docchanges option can be used in
Step 3 to avoid tracking changes in doc-
umentation, which reduces both the
size of the report and the report’s index
files.

How JDiff Works
JDiff uses the Javadoc doclet API (see

the Javadoc homepage), which gives
doclet developers a ready-made, easy-
to-use tree structure of all the Java pack-
ages and classes in the files scanned by
Javadoc. Doclets have been used to gen-
erate MIF and RTF documentation of
APIs, to create customized Javadoc tags
such as @todo, and even to generate
source code for other applications using
tags in the Javadoc comment blocks (see
articles referenced at www.doclet.com).

The JDiff doclet has two modes of
operation. In the first mode (Steps 1 and
2), it acts as an XML-generating doclet,
which traverses all the known packages
and classes and writes as much infor-
mation about them as it can into an

XML file. The XML file now represents
everything the Javadoc knew about the
scanned API. JDiff can also generate an
XML Schema file (api.xsd) that describes
the XML file and permits XML parsers to
validate the XML file later on.

The second mode of operation (Step
3) takes two such XML files as input to
an XML parser, such as the Xerces XML
parser, and carefully compares them,
populating an instance of the JDiff
APIDiff.java class as it does so. The
results of the comparison are then used
by a number of JDiff classes to generate
the HTML output. A summary page of
all the packages that were removed,
added, or changed is created, with links
to pages for each package and class.
Index pages are also generated for all the
differences. Finally, statistics pages and
other optional HTML pages are generat-
ed. All generated files except the top-
level summary are in a single directory
named “changes,” which makes ship-
ping the HTML files very easy.

The Benefits of Using JDiff
• JDiff is based on the standard Javadoc

tool, and is just about as simple to
use.

• Developers and documentation
teams can produce release documen-
tation describing precisely what has
changed in each version of their prod-
uct. Knowing what has changed
between versions of a product leads
to faster acceptance of new versions,
and fewer frustrated customer calls
when a product changes.

• Developers who work in different
locations and time zones can use JDiff
to summarize the changes in APIs and
documentation blocks as the APIs
change during development.

• QA and testing organizations can use
JDiff to help identify which parts of an
API have changed most between ver-
sions, indicating which areas need the
most testing.

Resources
• JDiff: www.jdiff.org,
• Project hosted by SourceForge:

http://javadiff.sourceforge.net
• Javadoc Tool:

http://java.sun.com/j2se/javadoc/in
dex.html

• Writing your own doclet:
http://java.sun.com/j2se/1.4/docs/t
ooldocs/javadoc/overview.html

• Third-party doclets:
http://java.sun.com/j2se/javadoc/fa
q.html#doclets

• Doclet: www.doclet.com

FIGURE 4 Three steps for using JDiff

doar@pobox.com

J2
SE

H
om

e
J2

E
E

J2
M

E

FIGURE 3 Typical J2SE1.4 documentation changes

TABLE 1 Percentage changes between different APIs

OLD API NEW API PERCENTAGE CHANGE
J2SE 1.2 J2SE 1.3.0 11%
J2SE 1.3.0 J2SE 1.4 33%
J2SE 1.3.0 J2SE 1.3.1 <1%
EJB 1.1 EJB 2.0 37%
Servlet 2.2 Servlet 2.3 49%

AUTHOR BIO
Matthew Doar, a

software developer at
Vitria Technology, Inc.,
has worked with Java
since the early days
of JDK1.1. He wrote

JDiff with the intention
that it should be as

easy to use as
Javadoc, and to

improve the overall
level of

documentation
shipped with all Java

products
(www.pobox.com/~do
ar). Matthew holds a

PhD in computer
science from the

University of
Cambridge.

