initial commit

This commit is contained in:
overcuriousity
2025-09-03 13:20:23 +02:00
parent 13855a70ae
commit 759acc855d
57 changed files with 7306 additions and 2 deletions

View File

View File

@@ -0,0 +1,115 @@
import logging
import pandas as pd
from datetime import datetime as dt
from PyQt5.QtCore import Qt
from sqlalchemy import func, cast, String, distinct
from logline_leviathan.database.database_manager import ContextTable, EntityTypesTable, DistinctEntitiesTable, EntitiesTable, FileMetadata
def generate_dataframe(db_session, tree_items, file_items, context_selection, only_crossmatches=False, start_date=None, end_date=None, include_flagged=False, only_flagged=False, only_unflagged=False):
if not db_session:
raise ValueError("Database session is None")
all_data = [] # List to accumulate data from all entity types
# Extract entity_type from selected tree items
selected_entity_types = [item.entity_type for item in tree_items if item.checkState(0) == Qt.Checked]
checked_files = [item for item in file_items.getCheckedFiles()]
logging.debug(f"Generating dataframe, selected entity types: {selected_entity_types}, passed timestamp range: {start_date} - {end_date}")
context_field = {
'Kompakte Zusammenfassung ohne Kontext': None,
'Kontext - gleiche Zeile': ContextTable.context_small,
'Kontext - mittelgroß': ContextTable.context_medium,
'Kontext - umfangreich': ContextTable.context_large
}.get(context_selection)
# Convert start_date and end_date to datetime objects if they are not None
if start_date and end_date:
start_datetime = dt.combine(start_date, dt.min.time())
end_datetime = dt.combine(end_date, dt.max.time())
# Creating a subquery to count distinct file IDs
file_count_subquery = db_session.query(
EntitiesTable.distinct_entities_id,
func.count(distinct(EntitiesTable.file_id)).label('file_count')
).group_by(EntitiesTable.distinct_entities_id)
if only_crossmatches:
file_count_subquery = file_count_subquery.having(func.count(distinct(EntitiesTable.file_id)) > 1)
file_count_subquery = file_count_subquery.subquery()
for entity_type in selected_entity_types:
if context_selection == 'Kompakte Zusammenfassung ohne Kontext':
query = db_session.query(
EntityTypesTable.entity_type,
DistinctEntitiesTable.distinct_entity,
func.count(EntitiesTable.entities_id).label('occurrences'),
func.group_concat(
FileMetadata.file_name + ':line' + cast(EntitiesTable.line_number, String)
).label('sources'),
func.group_concat(
cast(EntitiesTable.entry_timestamp, String)
).label('timestamps')
).join(EntityTypesTable, DistinctEntitiesTable.entity_types_id == EntityTypesTable.entity_type_id
).join(EntitiesTable, DistinctEntitiesTable.distinct_entities_id == EntitiesTable.distinct_entities_id
).join(FileMetadata, EntitiesTable.file_id == FileMetadata.file_id
).join(file_count_subquery, DistinctEntitiesTable.distinct_entities_id == file_count_subquery.c.distinct_entities_id
).filter(EntityTypesTable.entity_type == entity_type
).group_by(DistinctEntitiesTable.distinct_entity)
# Apply timestamp filter if start_date and end_date are provided
if start_date and end_date:
query = query.filter(EntitiesTable.entry_timestamp.between(start_datetime, end_datetime))
if checked_files:
query = query.filter(FileMetadata.file_name.in_(checked_files))
if include_flagged:
if only_flagged:
query = query.filter(EntitiesTable.flag == True)
elif only_unflagged:
query = query.filter(EntitiesTable.flag == False)
for row in query.all():
sources = row[3].replace(',', ' // ') if row[3] is not None else ''
timestamps = row[4].replace(',', ' // ') if row[4] is not None else ''
all_data.append([row[0], row[1], row[2], timestamps, sources, ''])
else:
query = db_session.query(
EntityTypesTable.entity_type,
DistinctEntitiesTable.distinct_entity,
func.count(EntitiesTable.entities_id).over(partition_by=DistinctEntitiesTable.distinct_entity).label('occurrences'),
FileMetadata.file_name,
EntitiesTable.line_number,
context_field,
EntitiesTable.entry_timestamp
).select_from(EntitiesTable
).join(DistinctEntitiesTable, EntitiesTable.distinct_entities_id == DistinctEntitiesTable.distinct_entities_id
).join(EntityTypesTable, DistinctEntitiesTable.entity_types_id == EntityTypesTable.entity_type_id
).join(FileMetadata, EntitiesTable.file_id == FileMetadata.file_id
).outerjoin(ContextTable, EntitiesTable.entities_id == ContextTable.entities_id
).join(file_count_subquery, DistinctEntitiesTable.distinct_entities_id == file_count_subquery.c.distinct_entities_id
).filter(EntityTypesTable.entity_type == entity_type)
# Apply timestamp filter if start_date and end_date are provided
if start_date and end_date:
query = query.filter(EntitiesTable.entry_timestamp.between(start_datetime, end_datetime))
if checked_files:
query = query.filter(FileMetadata.file_name.in_(checked_files))
if include_flagged:
if only_flagged:
query = query.filter(EntitiesTable.flag == True)
elif only_unflagged:
query = query.filter(EntitiesTable.flag == False)
for row in query.all():
file_name = row[3]
line_number = row[4]
entry_timestamp = row[6].strftime('%Y-%m-%d %H:%M:%S') if row[6] is not None else ''
context_info = row[5] if row[5] is not None else ''
all_data.append([row[0], row[1], row[2], entry_timestamp, file_name, line_number, context_info])
# Define the columns for the DataFrame based on context_selection
columns = ["Entity Type", "Entity", "Occurrences", "Timestamp", "Sources", "Context"] if context_selection == 'Kompakte Zusammenfassung ohne Kontext' else ["Entity Type", "Entity", "Occurrences", "Timestamp", "Source File", "Line Number", "Context"]
# Construct and return the DataFrame from all accumulated data
return pd.DataFrame(all_data, columns=columns)

View File

@@ -0,0 +1,71 @@
from logline_leviathan.exporter.export_constructor import generate_dataframe
import re
import pandas as pd
def create_regex_pattern_from_entity(entity):
words = entity.split()
regex_pattern = "|".join(re.escape(word) for word in words)
return re.compile(regex_pattern, re.IGNORECASE)
def highlight_entities_in_context(context, entity_regex):
def replace_match(match):
return f"<mark>{match.group()}</mark>"
return re.sub(entity_regex, replace_match, context)
def generate_html_file(output_file_path, db_session, checkboxes, files, context_selection, only_crossmatches, start_date=None, end_date=None, include_flagged=False, only_flagged=False, only_unflagged=False):
# Fetch data using the new DataFrame constructor
df = generate_dataframe(db_session, checkboxes, files, context_selection, only_crossmatches, start_date, end_date, include_flagged, only_flagged, only_unflagged)
# Add line breaks for HTML formatting where needed
if context_selection == 'Kompakte Zusammenfassung ohne Kontext':
df['Sources'] = df['Sources'].apply(lambda x: x.replace(' // ', ' // <br>'))
df['Timestamp'] = df['Timestamp'].apply(lambda x: x.replace(' // ', ' // <br>'))
# Iterate over the DataFrame to apply regex-based highlighting
for index, row in df.iterrows():
entity_regex = create_regex_pattern_from_entity(row['Entity'])
df.at[index, 'Context'] = highlight_entities_in_context(row['Context'], entity_regex)
# Replace newline characters with HTML line breaks in the 'Context' column
df['Context'] = df['Context'].apply(lambda x: x.replace('\n', '<br>') if x else x)
# Convert DataFrame to HTML table
html_table = df.to_html(classes="table table-bordered", escape=False, index=False)
html_template = f"""
<!DOCTYPE html>
<html>
<head>
<title>Logline Leviathan Report</title>
<style>
.table {{
width: 100%;
max-width: 100%;
margin-bottom: 1rem;
background-color: transparent;
}}
.table th, .table td {{
padding: 0.75rem;
vertical-align: top;
border-top: 1px solid #dee2e6;
max-width: 300px; /* Max width */
word-wrap: break-word; /* Enable word wrapping */
}}
.table-bordered {{
border: 1px solid #dee2e6;
}}
.table-bordered th, .table-bordered td {{
border: 1px solid #dee2e6;
}}
</style>
</head>
<body>
{html_table}
</body>
</html>"""
# Write the HTML template to the file
with open(output_file_path, 'w', encoding='utf-8') as file:
file.write(html_template)

View File

@@ -0,0 +1,94 @@
import re
from logline_leviathan.exporter.export_constructor import generate_dataframe
def create_regex_pattern_from_entity(entity):
words = entity.split()
regex_pattern = "|".join(re.escape(word) for word in words)
return re.compile(regex_pattern, re.IGNORECASE)
def highlight_entities_in_context(context, entity_regex):
def replace_match(match):
return f"<mark>{match.group()}</mark>"
return re.sub(entity_regex, replace_match, context)
def generate_niceoutput_file(output_file_path, db_session, checkboxes, files, context_selection, only_crossmatches, start_date=None, end_date=None, include_flagged=False, only_flagged=False, only_unflagged=False):
# Fetch data using the new DataFrame constructor
df = generate_dataframe(db_session, checkboxes, files, context_selection, only_crossmatches, start_date, end_date, include_flagged, only_flagged, only_unflagged)
# Add line breaks for HTML formatting where needed
if context_selection == 'Kompakte Zusammenfassung ohne Kontext':
df['Sources'] = df['Sources'].apply(lambda x: x.replace(' // ', ' // <br>'))
df['Timestamp'] = df['Timestamp'].apply(lambda x: x.replace(' // ', ' // <br>'))
# Iterate over the DataFrame to apply regex-based highlighting
for index, row in df.iterrows():
entity_regex = create_regex_pattern_from_entity(row['Entity'])
df.at[index, 'Context'] = highlight_entities_in_context(row['Context'], entity_regex)
# Replace newline characters with HTML line breaks in the 'Context' column
df['Context'] = df['Context'].apply(lambda x: x.replace('\n', '<br>') if x else x)
# Convert DataFrame to HTML table
html_table = df.to_html(classes="display responsive nowrap", table_id="example", escape=False, index=False)
# HTML template with doubled curly braces in JavaScript part and additional configurations
html_template = """
<!DOCTYPE html>
<html>
<head>
<title>Logline Leviathan Report</title>
<link rel="stylesheet" type="text/css" href="https://cdn.datatables.net/1.11.5/css/jquery.dataTables.min.css"/>
<link rel="stylesheet" type="text/css" href="https://cdn.datatables.net/buttons/2.2.2/css/buttons.dataTables.min.css"/>
<script type="text/javascript" src="https://code.jquery.com/jquery-3.5.1.js"></script>
<script type="text/javascript" src="https://cdn.datatables.net/1.11.5/js/jquery.dataTables.min.js"></script>
<script type="text/javascript" src="https://cdn.datatables.net/buttons/2.2.2/js/dataTables.buttons.min.js"></script>
<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/jszip/3.1.3/jszip.min.js"></script>
<script type="text/javascript" src="https://cdn.datatables.net/buttons/2.2.2/js/buttons.html5.min.js"></script>
<script type="text/javascript" src="https://cdn.datatables.net/buttons/2.2.2/js/buttons.print.min.js"></script>
</head>
<body>
{0}
<script type="text/javascript">
$(document).ready(function () {{
// DataTables initialization
var table = $('#example').DataTable({{
"dom": 'Blfrtip',
"buttons": ['copy', 'csv', 'excel', 'pdf', 'print'],
"searching": true,
"fixedHeader": true,
"autoWidth": false,
"lengthChange": true,
"pageLength": 10,
"orderCellsTop": true,
}});
// Create dropdown filtering menus
$('#example thead tr').clone(true).appendTo('#example thead');
$('#example thead tr:eq(1) th').each(function (i) {{
var title = $(this).text();
if (title === 'Entity Type' || title === 'Entity' || title === 'Occurrences' || title === 'Timestamp' || title === 'Sources' || title === 'Source File' || title === 'Line Number') {{
var select = $('<select><option value=""></option></select>')
.appendTo($(this).empty())
.on('change', function () {{
var val = $(this).val();
table.column(i)
.search(val ? '^' + $(this).val() + '$' : val, true, false)
.draw();
}});
table.column(i).data().unique().sort().each(function (d, j) {{
select.append('<option value="'+d+'">'+d+'</option>')
}});
}} else {{
$(this).html('');
}}
}});
}});
</script>
</body>
</html>""".format(html_table)
# Write the HTML template to the file
with open(output_file_path, 'w', encoding='utf-8') as file:
file.write(html_template)

View File

@@ -0,0 +1,46 @@
from logline_leviathan.database.database_manager import ContextTable, EntityTypesTable, DistinctEntitiesTable, EntitiesTable, FileMetadata
from sqlalchemy import func, distinct
from PyQt5.QtCore import Qt
def generate_wordlist(output_file_path, db_session, checkboxes, only_crossmatches, start_date=None, end_date=None, include_flagged=False, only_flagged=False, only_unflagged=False):
# Check if there are any checkboxes selected
if not checkboxes:
raise ValueError("No entities selected")
# Get selected entity types from checkboxes
selected_entity_types = [item.entity_type for item in checkboxes if item.checkState(0) == Qt.Checked]
# Prepare the initial query with proper joins
query = db_session.query(
DistinctEntitiesTable.distinct_entity
).join(
EntitiesTable, DistinctEntitiesTable.distinct_entities_id == EntitiesTable.distinct_entities_id
).join(
EntityTypesTable, EntitiesTable.entity_types_id == EntityTypesTable.entity_type_id
).filter(
EntityTypesTable.entity_type.in_(selected_entity_types)
)
# Add timestamp filtering if necessary
if start_date and end_date:
query = query.filter(EntitiesTable.entry_timestamp.between(start_date, end_date))
# Handle crossmatches, flagged, and unflagged conditions
if only_crossmatches:
query = query.group_by(DistinctEntitiesTable.distinct_entity).having(func.count(distinct(EntitiesTable.file_id)) > 1)
if include_flagged:
if only_flagged:
query = query.filter(EntitiesTable.flag == True)
elif only_unflagged:
query = query.filter(EntitiesTable.flag == False)
# Execute the query and fetch all results
results = query.all()
# Write the results to the file
with open(output_file_path, 'w', encoding='utf-8') as file:
for result in results:
file.write(result.distinct_entity + '\n')

View File

@@ -0,0 +1,47 @@
import pandas as pd
from logline_leviathan.exporter.export_constructor import generate_dataframe
def ensure_utf8(s):
if isinstance(s, str):
return s.encode('utf-8', errors='replace').decode('utf-8')
return s
def generate_xlsx_file(output_file_path, db_session, checkboxes, files, context_selection, only_crossmatches, start_date=None, end_date=None, include_flagged=False, only_flagged=False, only_unflagged=False):
# Fetch data using the new DataFrame constructor
df = generate_dataframe(db_session, checkboxes, files, context_selection, only_crossmatches, start_date, end_date, include_flagged, only_flagged, only_unflagged)
# Process context field
if 'Context' in df.columns:
df['Context'] = df['Context'].str.strip() # Trim whitespaces
df['Context'] = df['Context'].str.replace(r'[^\x00-\x7F]+', '', regex=True) # Remove non-ASCII characters
df['Context'] = df['Context'].apply(lambda x: x[:32767] if isinstance(x, str) else x) # Truncate to 32767 characters (Excel limit)
# Reorder columns based on whether 'Sources' or 'Source File' and 'Line Number' columns are in the DataFrame
if 'Sources' in df.columns:
df = df[["Entity Type", "Entity", "Occurrences", "Timestamp", "Sources", "Context"]]
elif 'Source File' in df.columns and 'Line Number' in df.columns:
df = df[["Entity Type", "Entity", "Occurrences", "Timestamp", "Source File", "Line Number", "Context"]]
# Apply ensure_utf8 to all string columns in df
for col in df.select_dtypes(include=[object]):
df[col] = df[col].apply(ensure_utf8)
# Using pandas.ExcelWriter
with pd.ExcelWriter(output_file_path, engine='openpyxl') as writer:
for entity_type in df['Entity Type'].unique():
df_filtered = df[df['Entity Type'] == entity_type]
df_filtered.to_excel(writer, sheet_name=entity_type, index=False)
# Get the xlsxwriter workbook and worksheet objects.
worksheet = writer.sheets[entity_type]
# Set column width and enable text wrapping
for idx, col in enumerate(df_filtered.columns):
# Adjust the column width if necessary
worksheet.column_dimensions[chr(65 + idx)].width = 20 # 65 is ASCII for 'A'
# Set alignment if needed
# for row in worksheet.iter_rows(min_row=2, max_col=len(df_filtered.columns), max_row=len(df_filtered) + 1):
# for cell in row:
# cell.alignment = Alignment(wrap_text=True)
# The file is saved automatically using the with context